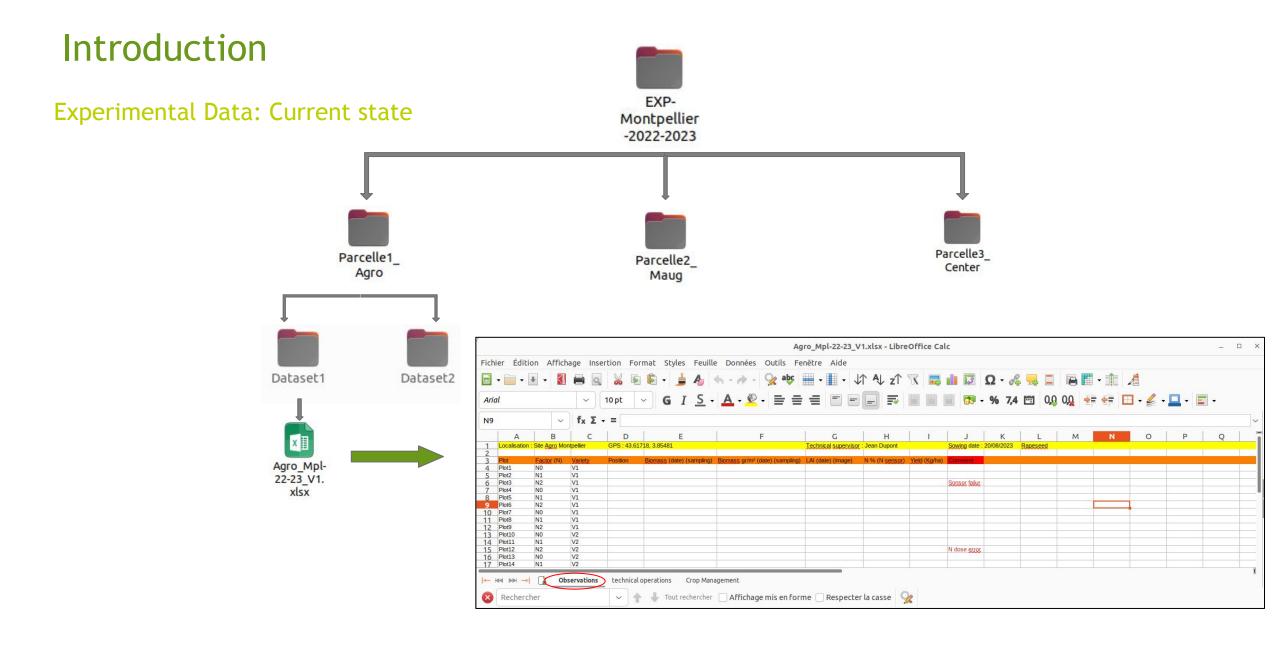


Data Management S4: Advanced data management (1) Variables & Measurements

Thursday 07/12/2023 - 14:00-16:00 (CET) Isabelle Alic, Farzaneh Kazemipour-Ricci - INRAE Sylvain Poque - University of Helsinki

General objectives: Overview of data management for plant phenotyping - focus on FAIR data

Session 4 Advanced data management (1): Variables & Measurements



Overview

Advanced data management Variables & Measurements (1)

- Reminder of concepts
- Measured data, Variables & Provenance
- Data Pipeline, Automatized data insertion
- Use Case: Sending data to PHIS

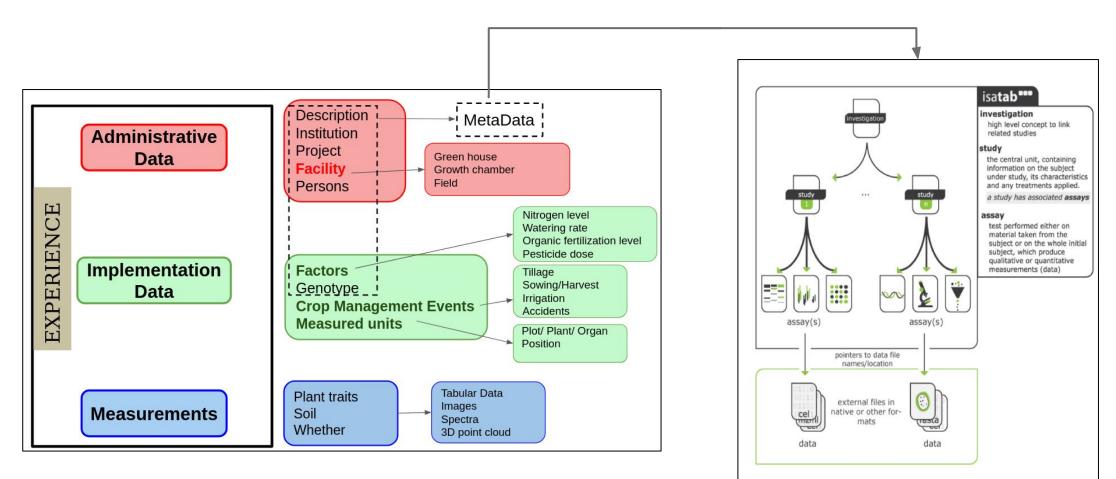
Introduction EXP-Experimental Data: Current state Parcelle3 Parcelle1 Center Agro o x LibreOffice Calc _ Dataset1 Dataset: zî 🔨 🔜 🏨 🖾 Ω • 🖧 🔜 🔲 🖬 🖬 • 🏦 🦽 -🐯 - % 7,4 🖾 0,0 0,0 🐳 🐖 🛄 - 🖉 - 🛄 -I J K L M N O P Q X Agro_Mpl-22-23_V1. Sousor failur xlsx 12 Plot9 13 Plot10 14 Plot11 15 Plot12 16 Plot13 17 Plot14 N2 N0 N1 N2 N0 N1 V2 V2 V2 N dose error V2 V2

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

technical operations Crop Management

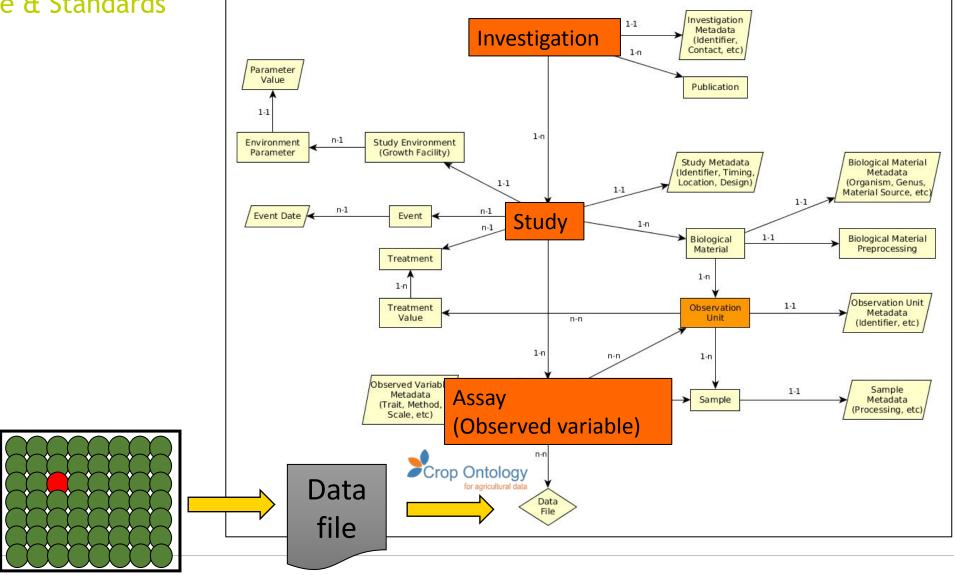
|← |ee | ≥>| 💦

Rechercher

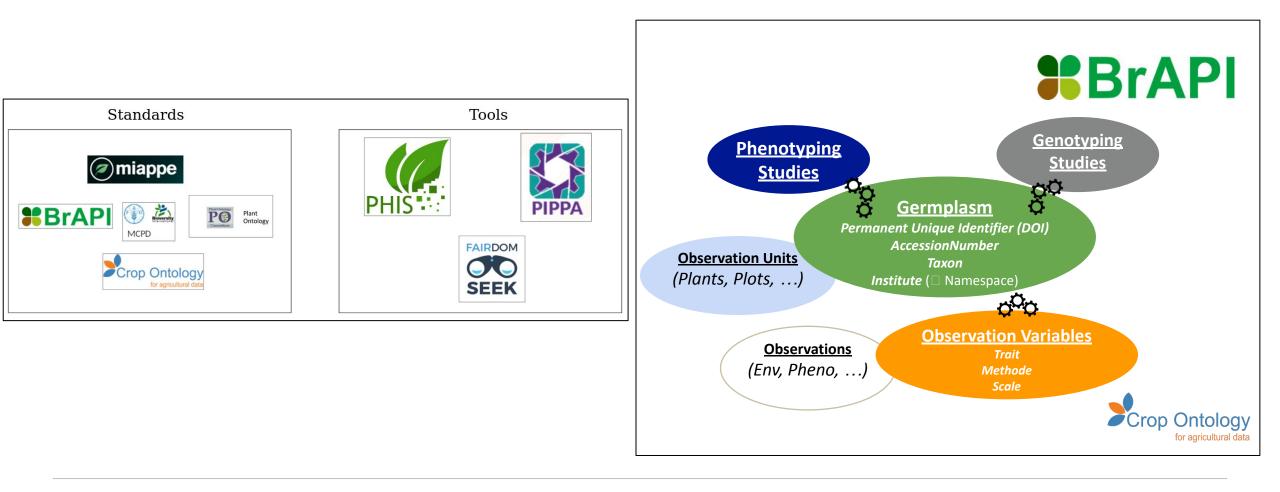

Observations

Reproducible science levels

- **Re-Run:** same lab, same experiments, redo analytics (checking)
- **Repeat:** same lab, redo experiments and analytics
- **Transparency:** same experiments, other lab redo analytics (proof)
- **Replicate, Reproduce:** other lab redo experiments and analytics (robustness)
- **Reuse:** for different scientific results and/or other contexts



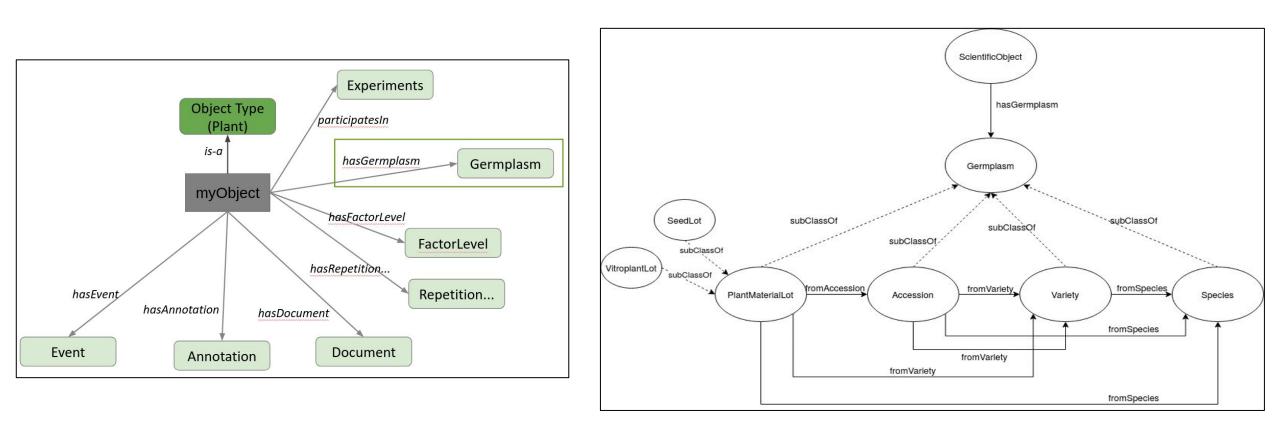
Data structure



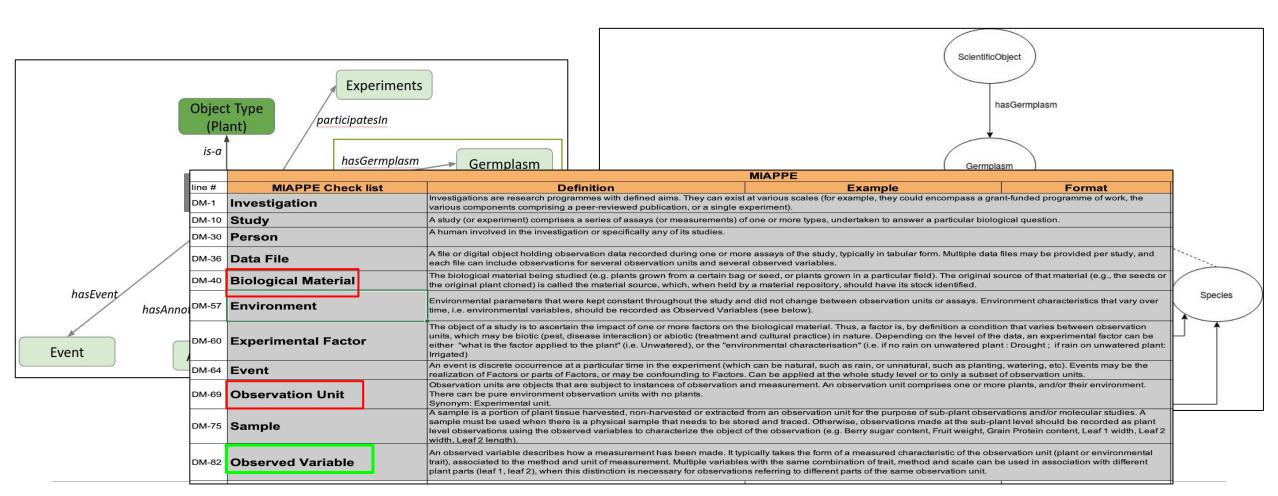
Data structure & Standards

EMPHASIS

Use Standards, Compatible tools and APIs


- Standard Open Web Service API
- Information Exchange, Main target: Breeding

MIAPPE/BrAPI Compliant S.I.



MIAPPE/BrAPI Compliant S.I.

Context

Compared to 20 years ago...

- Number and diversity of data sources has increased
- Stronger complexity of data pipelines to be designed has increased

Increasing the difficulties for a reproducible and open science

Makes hard to understand how and under what conditions the data were produced

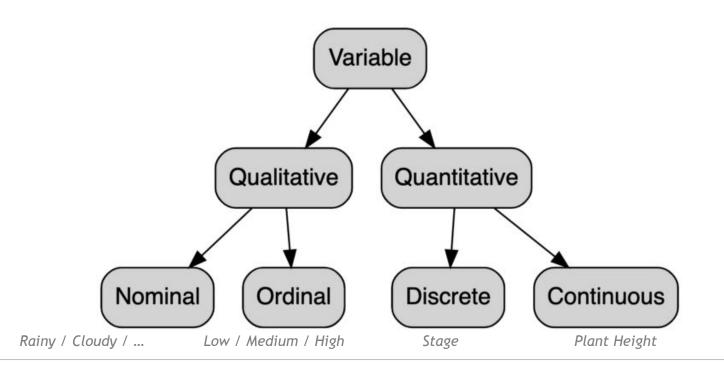
We need to know about data provenance

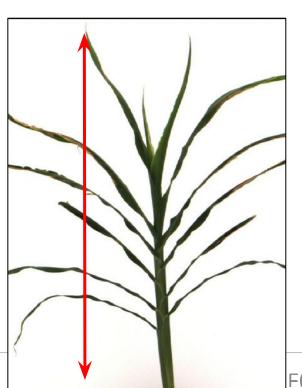
We need to know about **method of data production**

Variables - Definition

Variable is the key element of data structuring and analytics

A variable can be represented by a **combination of descriptive components giving meaning to the value** derived from a **data acquisition** event be it **an observation**, **a measurement**, **a simulation or a calculation**.




Image: Moira Sheehan

Variables - Definition

Reality is that too often...

- No variable ID
- Same name for different variables
- Different names for same variable
- No (or not machine readable) variable description
- Unstable variable

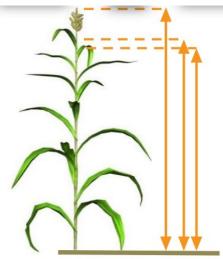


Figure From D. Pot, CIRAD

Image: Moira Sheehan

Variables - Definition

Formalized variable with ID...

...Aims FAIR data with a focus on interoperability and reuse

- Provides a **description**: simple, precise, unambiguous •
- Share/Reuse variables: descriptions, structuring •
- Make it easier to aggregate and analyse of harmonized data .
- Be able to compare, merge, combine, etc. ٠

Variables that affect a variable

		bias: 4,65 19.52 2	2.53
		3.50 18.66 2	2.27
		4.06 17.56 2	2.98
Tair size	BioMa wt pr	transform? 4.06 17.56 2	
18.5 5.0	4.2 4.2 3.7	trait	
19.6 3.8	4.2 4.2 5.2		
19.0 3.3	6.0 6.0 3.8		
19.5 3.8	3.4 4.9 5.2	Compatible individuals?	
19.7 3.4	3.1 5.1 4.3		
19.0 4.8	4.0 4.2 3.5		
20.7 4.7	5.0 7.3 5.2		

same-as?

similar?

bias?

temp biomass

2.93 3.32

3.41

5.38

5.33

2.35

4.74

4.55

3.75

length

3.79 18.55

3.83 19.79

4.19 19.87

5,14 19,12

3.66 19.16

3.84 19.03

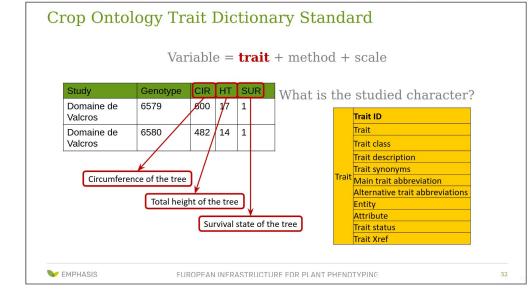
5.74 20.27 2.90 18.06

.62 19.16

How do you formalise the variables?

Requirements for formalising of variables:

- Focus on WHAT, HOW, (WHERE, WHEN)
- In-depth understanding (area of expertise)
- Step back from the variable, its use, its usefulness and its potential second use
- Provide a human-understandable definition


We can create an infinite number of variables!

Need to formalise variables:

- that anyone can easily understand
- that can be manipulated with machine

A Common Model in Plant Sciences

- Trait characteristic of an organism
- Method is the way we have to measure variable. Giving description of protocols and type of instruments used.
- Unit is an element from the Ontology of Units of Measurement

We can create an infinite number of variables!

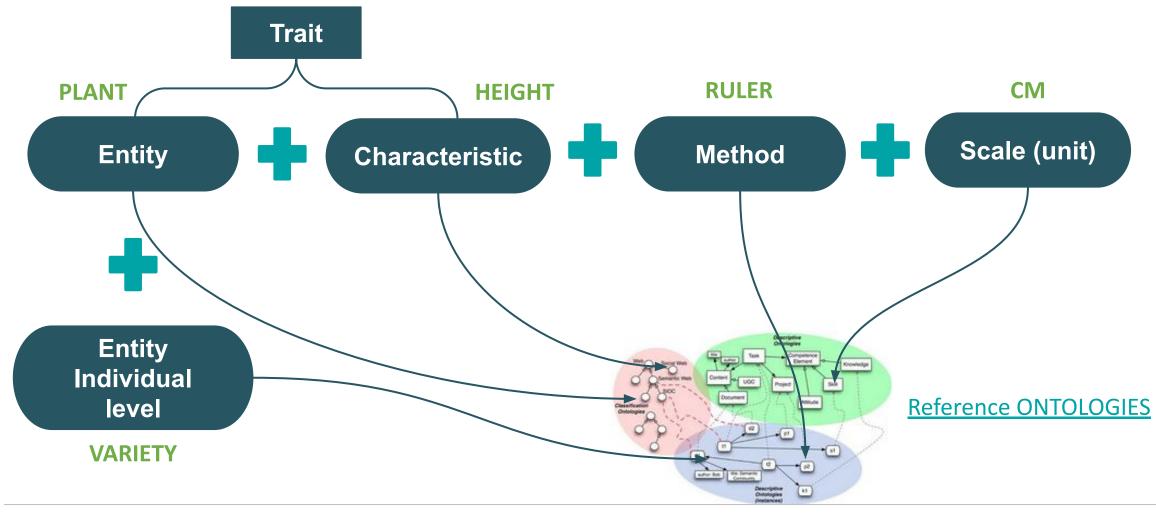
Need to formalise variables:

- that anyone can easily understand
- that can be manipulated with machine

A Common Model in Plant Sciences

• Entity is the target of the variable, what we are measuring on

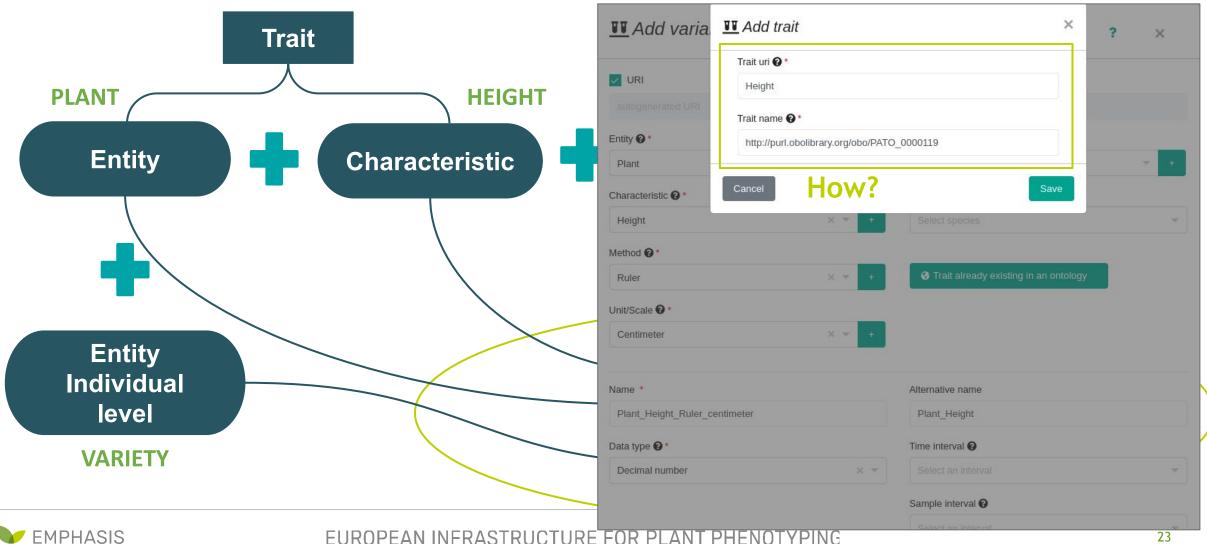
Trait


- Characteristic is the observed property or physical quantity or quality.
- Method is the way we have to measure variable. Giving description of protocols and type of instruments used.
- Unit is an element from the Ontology of Units of Measurement

How to implement this model properly

- Enable semantically precise and FAIR descriptions
- Break down the description into **standardised atomic elements**
- Link these elements to existing vocabularies/ontologies
- Make the **description machine-readable**

How to implement this model properly


Enable semantically precise and FAIR descriptions - Machine readable

	CanopyEar	_number_counting_PERm2			
PLANT	5 Description	Annotations Device associated Data Visualization Documents			
Entity	General i	nformations	/ 3 🗊	Structure	
	URI Name Alternative name Description EN: mean ear numb	http://phenome.inrae.fr/id/variable/canopyEar_Number_c CanopyEar_number_counting_PERm2 Ear_nb_m2 per per m2 measured on a sample FR: nb épis par m2 (échantillon)		Entity Entity of interest Characteristic Method Unit/Scale	canopyEar
Entity Individual level	Reference o Arelations	ntologies Reference URI		Advanced in Species	formation barley , bread wheat , durum wheat
VARIETY	Narrower Exact match	https://cropontology.org/term/CO_321:0001366 https://agrovoc.fao.org/browse/agrovoc/en/page/c_8504		Data type Time interval Sample interval	Decimal number
EMPHASIS				Trait uri Trait name	https://cropontology.org/term/CO_321:0000166 Ear number

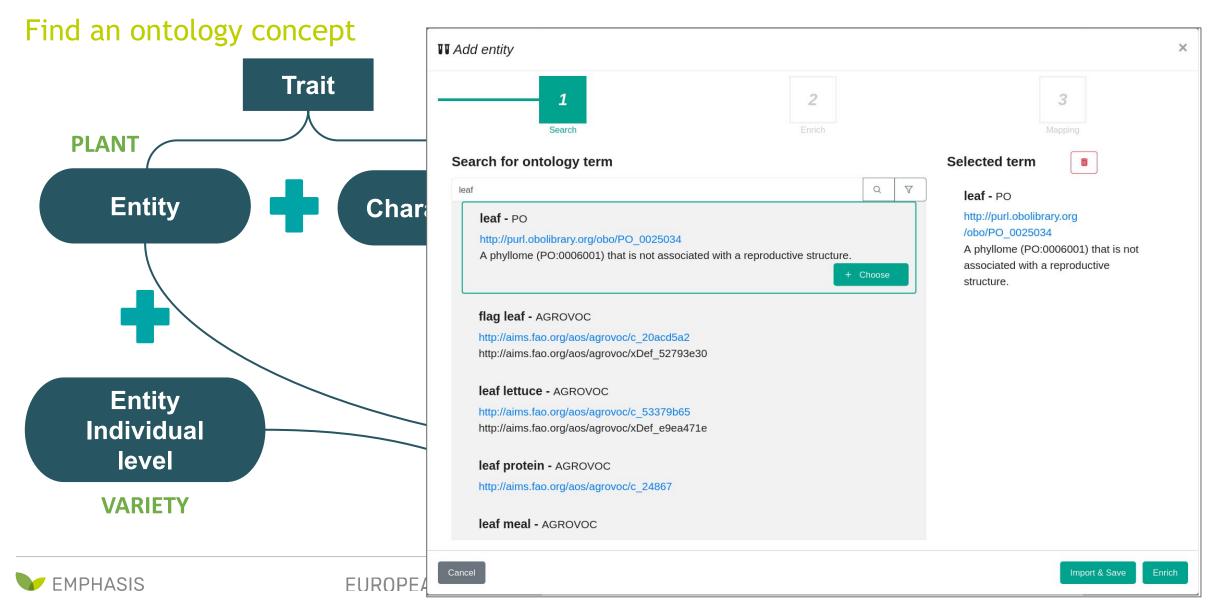
Break down the description into standardised atomic elements

Link these elements to existing vocabularies/ontologies

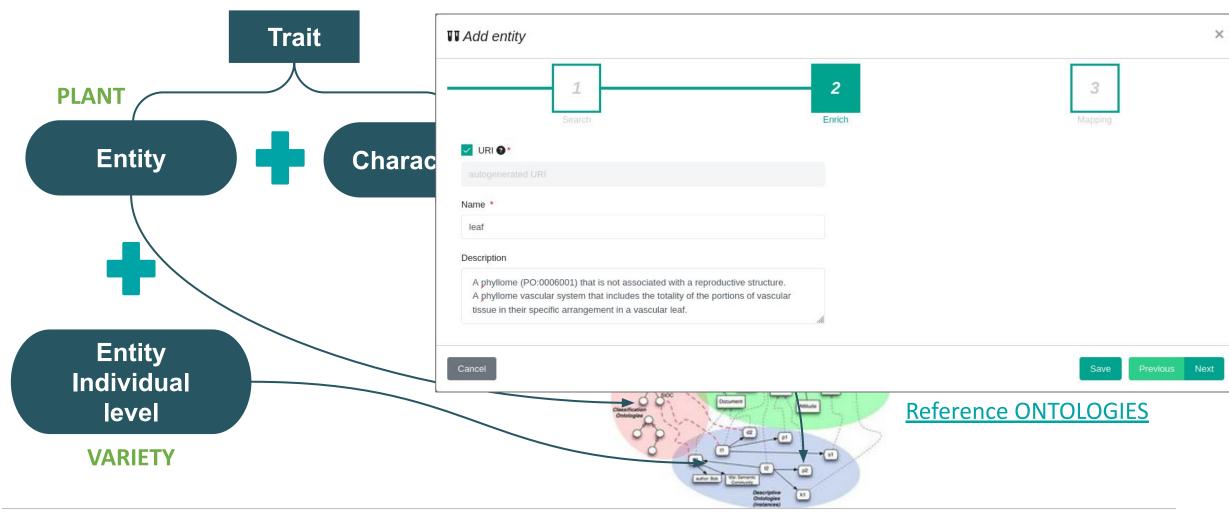
Variable sharing

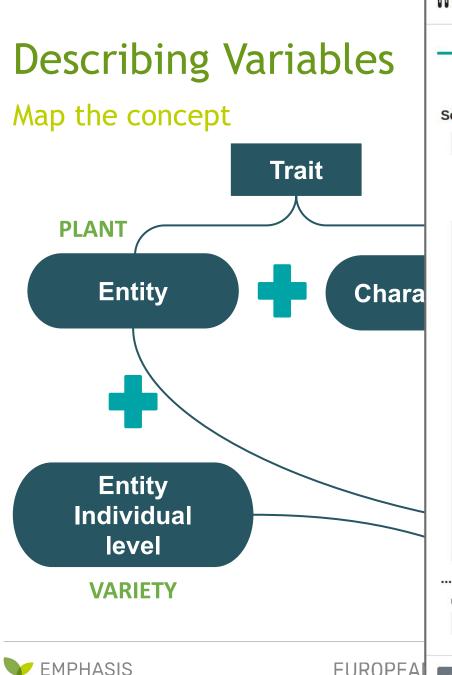
Link these elements to existing vocabularies/ontologies

Agroportal, a vocabulary and ontology repository for agronomy and related domains -


http://agroportal.lirmm.fr/

	e Search Mappings Recommender Annotator Projects Landscape	Login Support		
Browse		AgroPortal Browse Search Mapp	pings Recommender Annotator Projects Landscape	Login Support -
Browse the library of ontologies		AGROVOC Last uploaded: November 3, 2023		7 % F
Submit New Ontology	Search Showing AGROVOC (AGROVOC) An RDF vocabulary for describing the basic structure and content of concept scl such as thesauri, classification schemes, subject heading lists, taxonomies, 'folk	Summary Concepts Properties Notes		s Concepts JSON
 Entry Type ☑ Ontology (159) ☑ Ontology View (11) 	such as thesauri, classification schemes, subject heading lists, taxonomies, 'folk other types of controlled vocabulary, and also concept schemes embedded in gl and terminologies Uploaded: 11/3/23	Q Jump to ≢ Filter ▼	ID http://aims.fao.org/aos/agrovoc/c_61f3cae5 Preferred Name plant height Synonyms bitki yüksekliği Definitions http://aims.fao.org/aos/agrovoc/xDef_ed4b7d8b	
Uploaded in the Last	Common Greenhouse Ontology (CGO) This ontology is based on the SSN Ontology by the W3C Semantic Sensor Netwo Incubator Group (SSN-XG), together with considerations from the W3C/OGC Spa on the Web Working Group		In Schemes AGROVOC C	÷


Describing Variables



Describing Variables

Enrich the concept

II Add entity		
1	2	3
Search	Enrich	Mapping
Search for mapping	Selected term	

V

Search for mapping...

leaf		Q
Ontologies		
OEPO × and 2 more	× ×	All ontologies

leaf - PO

Leaf - OEPO

http://www.phenome-fppn.fr/vocabulary/2018/oepo#Leaf A phyllome vascular system (PO:0025206) that includes the totality of the portions of vascular tissue in their specific arrangement in a vascular leaf (PO:0009025). [database cross reference: POC:Ramona Walls]

Map term as

phyllode leaf - PO

Broader

Narrower

http://purl.obolibrary.org/obo/PO 0025335 Close match An adult ensiform leaf with a lamina that dev Exact match median plane, rather a transverse plane, throughout the length of the leaf and is a result of increased activity of the

...Or map manually

URI

EUROPEA

http://aims.fao.org/aos/agrovoc/c 8332

Map term as

leaf

A phyllome (PO:0006001) that is not associated with a reproductive structure.

Relations	Reference URI	Actions
Close match	http://purl.obolibrary.org/obo/PO_0025034	

×

Variable sharing

Resource Sharing Tool: Unified documentation and identification

- Centralise descriptions and identifiers
- Avoid duplicate entries and multiple sources
- Pool the work involved in describing variables and genetic resources
- Consistent management of identifiers
- Facilitate the adoption of standards

Variable sharing

Resource Sharing Tool: Unified

How?

- Shared File (Google drive, Sharepoint, etc.) •
- List of variables published on a dataverse •
- PHIS instance •

http://resources.plant-phenotyping.eu/em

Variable_uri http://phenome.inrae.fr/4P/id/varia

http://phenome.inrae.fr/4P/id/varia

http://phenome.inrae.fr/4P/id/varia

http://phenome.inrae.fr/4P/id/

http://phenome.inrae.fr/4P/id

http://phenome.inrae.fr/4P/id http://phonome.inrae.fr/4D/id/variabl

http://phenome.inrae.fr/4P/id/v

http://phenome.inrae.fr/4P/id/var

http://phenome.inrae.fr/4P/id/va http://phenome.inrae.fr/4P/id

http://phenome.inrae.fr/4P/id/va http://phenome.inrae.fr/4P/id/variable/00002

http://phenome.inrae.fr/4P/id/va

http://phenome.inrae.fr/4P/id/v

http://phenome.inrae.fr/4P

http://phenome.inrae.fr/4P/id/variable/00001

http://phenome.inrae.fr/4P/id/variable/00001

http://phenome.inrae.fr/4P/id/variable/00001

http://phenome.inrae.fr/4P/id/variable/000023

http://phenome.inrae.fr/4P/id/variable/000026

http://phenome.inrae.fr/4P/id/variable/000027

http://phenome.inrae.fr/4P/id/variable/000028

http://phenome.inrae.fr/4P/id/variable/000031

http://phenome.inrae.fr/4P/id/variable/000032

A

http://phenome.inrae.fr/4P/id/variable/0000 http://phenome.inrae.fr/4P/id/v

4P:000000

4P:000000

4P:000000

4P:000000

4P:000000

4P:000000 4P:000000 4P:000010 4P:000011

4P-000012

4P:000013

4P:000014

4P:00001

4P:000016

4P:000017 4P:000018

4P:000019

4P:00002 4P:000021

4P:000022

4P:000023 4P:000024

4P:00002

4P:00002

4P:000027

4P:000028

4P:00002

4P:00003

4P:000031

4P:000032

		@ English v	
	X	EPPN	
		Scientific Organization	>
EMPHAS		Shared ressources	~
You can connect as guest		Variables	
Connect as guest		Germplasm	
Login		Tools	>
Based on OpenSILEX version 1.1.0 Copyright 02021 INRAE		Web API	

4 • E	•• J •	► M		N	< > P	Q	R
Variable name (long name in PHIS)	Variable description	Trait_Entity_n	ame	Trait_Quality_name	Trait name	Trait class	Method nar
Canopy_Height_Photogrammetry_Meter	Average Height of the canopy estimated from photogrammetry in m	Canopy		✓ Height	 Canopy_Height 	morphological	* Photogramm
Canopy_HeightStd_Photogrammetry_Meter	Standard Deviation of canopy height estimated from photogrammetry in m	Canopy		 HeightStd 	 Canopy_HeightStd 	morphological	* Photogramm
Canopy_HeightFlag_Photogrammetry_Unitless	Canopy height quality Flag estimated from multi or stereovision techniques in m	Canopy		 HeightFlag 	 Canopy_HeightFlag 	morphological	* Photogramm
Soil_Height_Photogrammetry_Meter	Soil Altitude estimated from photogrammetry in m	Soil		 Height 	 Soil_Height 	morphological	* Photogramm
Canopy_SR850nm675nm_BandCombination_Unitless	Total Canopy vegetation index _ Simple Ratio (850nm,675nm), unitless	Canopy		* SR	 Canopy_SR 	Optical	* BandCombi
Canopy_CI850nm570nm_BandCombination_Unitless	Total Canopy vegetation index _ Chlorophyll Index Green (850nm,570nm), unitless	Canopy		* CLG	 Canopy_CLG 	Optical	* BandCombi
Canopy_Cl850nm730nm_BandCombination_Unitless	Total Canopy vegetation index _ Chlorophyll Index Red Edge (850nm, 730nm), unitless	Canopy		* CLRE	 Canopy_CLRE 	Optical	* BandCombi
Canopy_Cl850nm710nm_BandCombination_Unitless	Total Canopy vegetation index _ Chlorophyll Index Red Edge (850nm, 710nm) unitless	Canopy		- CLRE	 Canopy_CLRE 	Optical	* BandComb
Canopy_MCARI570nm730nm850nm_BandCombination_Unitless	Total Canopy vegetation index_Modified Chlorophyll Absorption Reflectance Index (570nm,730nm,850nm), unitless	Canopy		* MCARI	 Canopy_MCARI 	Optical	* BandComb
Canopy_MND450nm530nm850nm_BandCombination_Unitless	Total Canopy vegetation index_Modified Normalized Difference (450nm,530nm,850nm), unitless	Canopy		* mND	 Canopy_mND 	Optical	* BandComb
Canopy_MND450nm570nm850nm_BandCombination_Unitless	Total Canopy vegetation index_Modified Normalized Difference (450nm,570nm,850nm), unitless	Canopy		* mND	 Canopy_mND 	Optical	* BandComb
Canopy_MND450nm675nm850nm_BandCombination_Unitless	Total Canopy vegetation index_Modified Normalized Difference (450nm,675nm,850nm), unitless	Canopy		* mND	 Canopy_mND 	Optical	* BandComb
Canopy_MND450nm730nm850nm_BandCombination_Unitless	Total Canopy vegetation index_Modified Normalized Difference (450nm,730nm,850nm), unitless	Canopy		* mND	 Canopy_mND 	Optical	* BandComb
Canopy_MND850nm730nm450nm_BandCombination_Unitless	Total Canopy vegetation index_Modified Normalized Difference (850nm,730nm,450nm), unitless	Canopy		- mND	 Canopy_mND 	Optical	* BandComb
Canopy_MSR450nm850nm730nm_BandCombination_Unitless	Total Canopy vegetation index _ Modified Simple Ratio (450nm,850nm,730nm), unitiess	Canopy		* MSR	 Canopy_MSR 	Optical	* BandComb
Canopy_MTCl730nm850nm675nm_BandCombination_Unitless	Total Canopy vegetation index _ MERIS terrestrial Chlorophyll Index (730nm,850nm,675nm), unitless	Canopy		* MTCI	 Canopy_MTCI 	Optical	* BandComb
Canopy_ND850nm570nm_BandCombination_Unitless	Total Canopy vegetation index_Normalized Difference Vegetation Index (850nm,570nm), unitless	Canopy		- ND	 Canopy_ND 	Optical	* BandComb
Canopy_ND850nm730nm_BandCombination_Unitless	Total Canopy vegetation index_Normalized Difference Vegetation Index (850nm,730nm), unitless	Canopy		* ND	 Canopy_ND 	Optical	* BandComb
Canopy_ND850nm675nm_BandCombination_Unitless	Total Canopy vegetation index_Normalized Difference Vegetation Index (850nm,675nm), unitless	Canopy		* ND	- Canopy_ND	Optical	* BandComb
Canopy_PRI570nm530nm_BandCombination_Unitless	Total Canopy vegetation index_Photochemical Reflectance Index (570nm,530nm), unitless	Canopy		* PRI	 Canopy_PRI 	Optical	* BandComb
Canopy_InclinationAngle_PhysicalModel_Degree	Orientation of canopy elements retrieved from the inversion of radiative transfer model in decimal degrees	Canopy		* InclinationAngle	 Canopy_InclinationAngle 	Optical	* BandComb
Canopy_ChlorophyllContent_PhysicalModel_GramPerSquareMeter	Chlorophyll content of the the canopy, in micrograms per square meters (µg/m²)	Canopy		* ChlorophyllContent	 Canopy_ChlorophyllContent 	biochemical	* PhysicalMo
LeafGreen_ChlorophyllContent_Physical model_MicroGramPerSquareCo	antiMe Chlorophyll content in the green leaves, in micrograms per square centimeters (µg/m²)	GreenLeaf		* ChlorophyllContent	 GreenLeaf_ChiorophyllContent 	biochemical	* PhysicalMo
CanopyGreen_CoverFraction0deg_PhysicalModel_Unitless	Canopy Green Cover fraction in the nadir direction retrieved from the inversion of radiative transfer model (unitless)	GreenCanopy		 CoverFraction 	 GreenCanopy_CoverFraction 	morphological	* PhysicalMo
CanopyGreen_CoverFraction0deg_ImageSegmentation_Unitless	Canopy Green Cover fraction in the nadir direction retrieved from the segmentation of a RGB image (unitless)	GreenCanopy		* CoverFraction	 GreenCanopy_CoverFraction 	morphological	* ImageProce
CanopyGreen_CoverFraction45deg_ImageSegmentation_Unitless	Canopy Green Cover fraction at 45° retrieved from the segementation of a RGB image (unitiess)	GreenCanopy		 CoverFraction 	 GreenCanopy_CoverFraction 	morphological	* ImageProce
CanopyGreen_FIPARWhiteSky_PhysicalModel_Unitless	Canopy fraction of intercepted diffuse (white sky) PAR (Photosynthetically Active Radiation - 400nm-700nm) absorption retriev	GreenCanopy		* FIPAR	 GreenCanopy_FIPAR 	morphological	* PhysicalMo
CanopyGreen_FIPARBlackSky_PhysicalModel_Unitless	Canopy fraction of intercepted PAR absorption in a given direction (black sky) retrieved from the inversion of radiative transfer r	GreenCanopy		+ FIPAR	 GreenCanopy_FIPAR 	morphological	* PhysicalMo
CanopyGreen_FIPARDaily_PhysicalModel_Unitless	Daily integrated value of the canopy fraction of intercepted PAR absorption retrieved from the inversion of radiative transfer mo	GreenCanopy		* FIPAR	 GreenCanopy_FIPAR 	morphological	* PhysicalMo
CanopyGreen_EffectiveAreaIndex_PhysicalModel_Unitless	Canopy Green Area Index retrieved from the inversion of radiative transfer model (unitiess)	GreenCanopy		* Area	 GreenCanopy_Area 	morphological	- PhysicalMo
Canopy_Reflectance450nm_Calibration_Unitless	Mean canopy reflectance in band 450nm (unitless)	Canopy		* Reflectance	 Canopy_Reflectance 	Optical	* ImageProce
Canopy_Reflectance450nmStd_Calibration_Unitless	Standard Deviation of canopy reflectance in band 450nm (unitless)	Canopy		* Reflectance	 Canopy_Reflectance 	Optical	* ImageProce
Canopy Reflectance530nm Calibration Unitless	Mean canopy reflectance in band 530nm (unitless)	Canopy		* Reflectance	 Canopy Reflectance 	Optical	* ImageProce

RÉPUBLIQUE FRANÇAISE

recherche.data.gouv.fr

Submit / Publish a dataset 📩 FN

About ~ Online help Y News The Ecosystem members ~ Data Y

Home > A multidisciplinary repository

A multidisciplinary repository

Updated at: 05/12/2023

The multidisciplinary repository is a sovereign publishing solution for sharing and opening up data for communities which are yet to set up their own recognised thematic repository.

	ariables nage and configure variables, entities, characteristics, met	hods and units				? 🕀 🕻	<u>م</u>
	♦Name	\$ Entity	Entity of interest	♦ Characteristic	\$ Method	♦ Unit/Scale	Action
	awn_type_estimation_1to3 AwnType_1to3	awn		type	estimation	Score[1-3]	0
0	awn_type_estimation_presORabs AwnType_presAbs	awn		type	estimation	Presence- absence	0
	canopy_FCover0_estimation_1to5	canopy		CoverFraction0deg	estimation	Score[1-5]	0
	canopy_FCover0_estimation_1to9	canopy		CoverFraction0deg	estimation	score[1-9]	0
	canopy_FCover0_estimation_percent	canopy		CoverFraction0deg	estimation	percent	0
	canopy_height_estimation_cm Plant_height	canopy		height	estimation	centimetre	0
	canopy_standEstablishment_estimation_1to5	canopy		stand establishment	estimation	Score[1-5]	0

Variables & Provenance: Understanding Data

Building credibility and trust in data, analysis and reporting

- Method is associated to Variable
- Provenance is associated to Data

- Variable method: protocol and type of thermometer (not compatible values)
- Provenance: name of the nurse or the manufacturer of the thermometer

MPHASIS

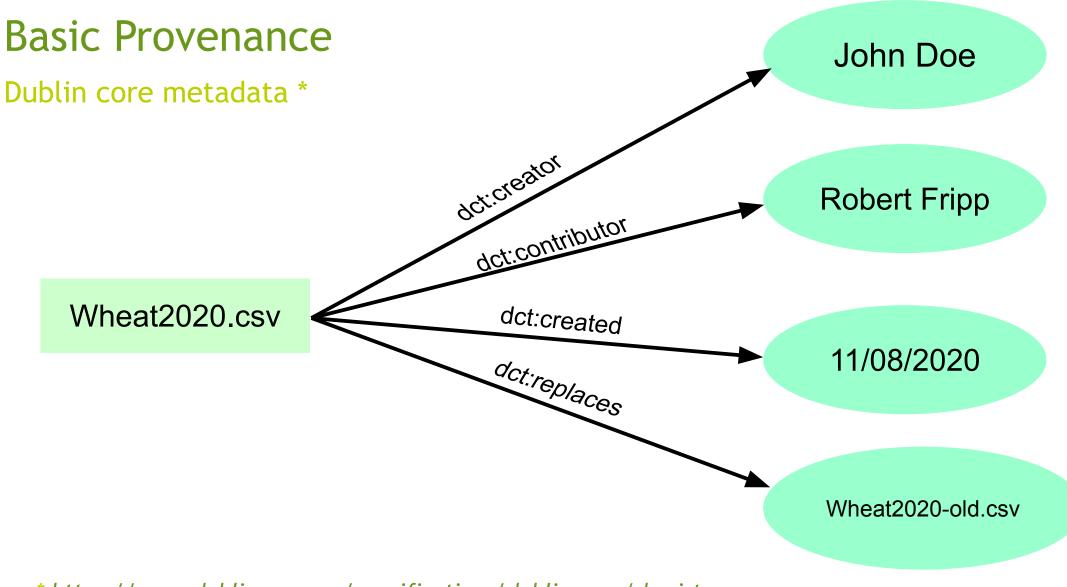
Variable definition - Special focus on method

Building credibility and trust in data, analysis and reporting

Trait = Plant Height

- Method 1 : Manual measurement
- Method 2 : Image processing
 - => 2 different and non-comparable variables!

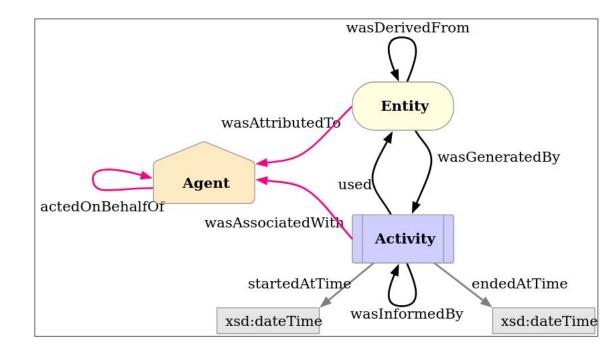
Image: Moira Sheehan


Whats is Provenance ?

That is metadata to know ...

- Who played a role when creating the data?
- Who contributed to the data?
- How data was transformed?
- Which tools were used?
- When and how data were produced?
- etc.

* <u>https://www.dublincore.org/specifications/dublin-core/dcmi-terms</u>

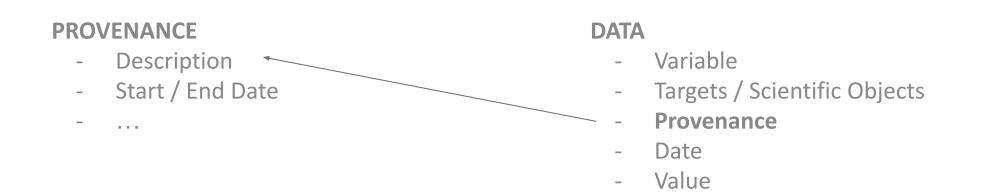

Advanced Provenance

Representation model for provenance (PROV-O *)

• Entity: data, data sources, documents, results, etc.

Entity can be **input** or **output**

- Agent: person, software, Web services, institution, company, etc.
 Agent bears the responsibility
- Activity: generating, transforming, modifying, processing, etc.
 Activity occurs over a period of time and acts upon or with entities



* <u>https://www.w3.org/TR/prov-o/</u>

Provenance: Data Acquisition description

- Provenance (Activity)
 - Formalisation of the transformation of raw data into processed data
 - Provenance will describe a process, a step in a data acquisition workflow
- Datafiles and Data (Entity)
 - Single item of factual information of variable complexity (e.g. a length or an image) resulting from measurement, observation or processing.

Provenance: Data Acquisition description

- Provenance (Activity)
 - Formalisation of the transformation of raw data into processed data
 - Provenance will describe a process, a step in a data acquisition workflow
- Datafiles and Data (Entity)
 - Single item of factual information of variable complexity (e.g. a length or an image) resulting from measurement, observation or processing.
- Devices (Agent)
 - Sensors
 - Vectors
 - Softwares

PROVENANCE

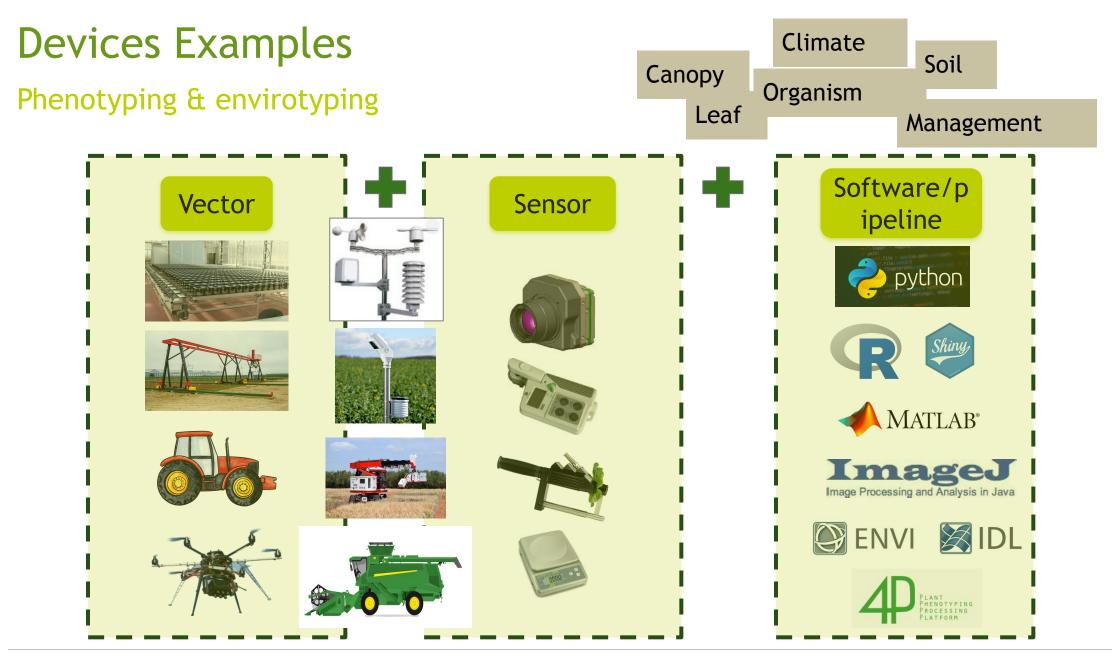
- Description 🔨
- Start / End Date
- Vector
- Sensor
- Operator
- . . .

_

DATA

- Variable
- Targets / Scientific Objects
- Provenance
- Date
- Value

Description


Device is any equipment to measure or control or calculate a property of an object,

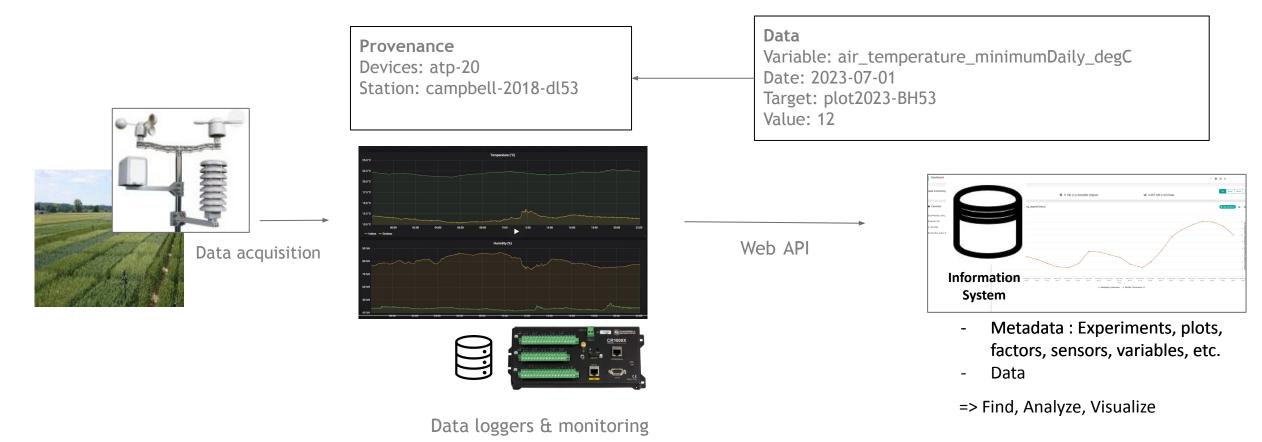
including also any equipment holding or carrying another one.

Ex.:

- Camera, Thermometer, Software, Spectrometer
- UAV, Field Robots Conveyor
- Weather Station, Acquisition station

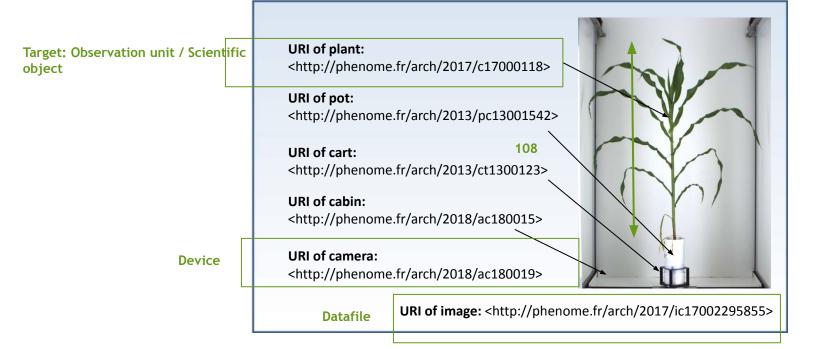
Datafiles and data

Description

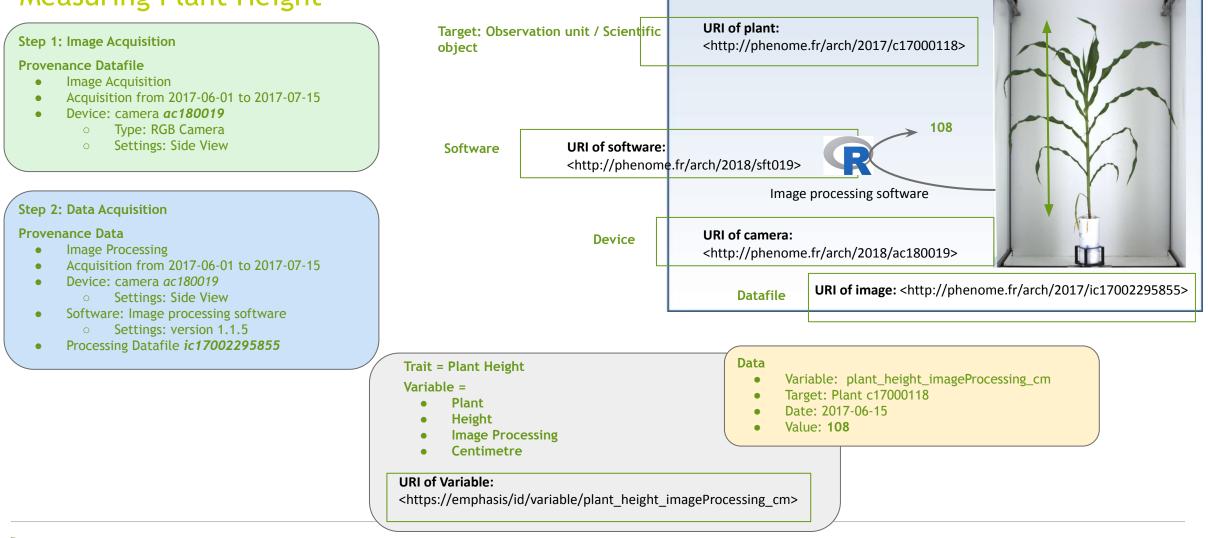

- Data: Data is a single item of factual information of variable complexity (e.g. a length or an image) resulting from measurement, observation or processing. This element can be used as input or output by specialised IT tools.
- Tabular Data: : Scalar data.
- Datafile / Complex Data: Complex data often serialized in files (e.g. image

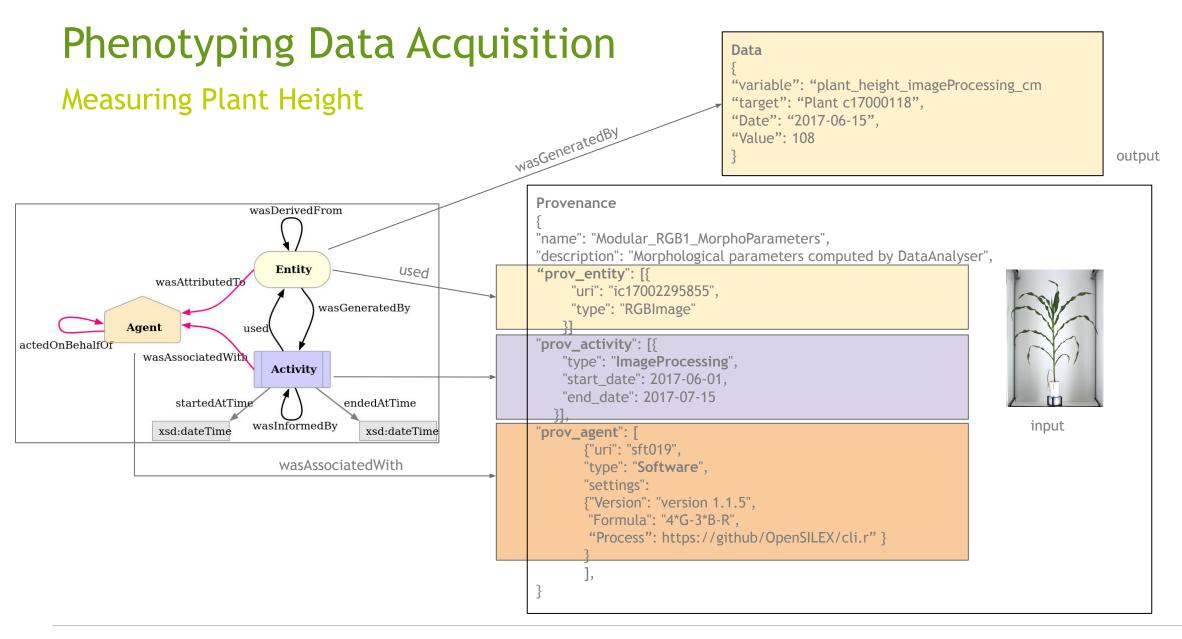
file, spectrum output, orthomosaic, etc.)

Environmental Data Acquisition


Automatized data acquisition from sensors

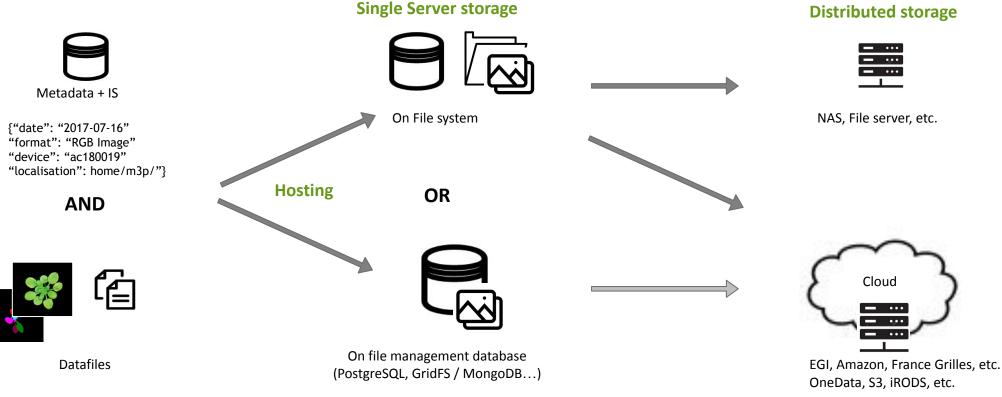
Phenotyping Data Acquisition


Measuring Plant Height



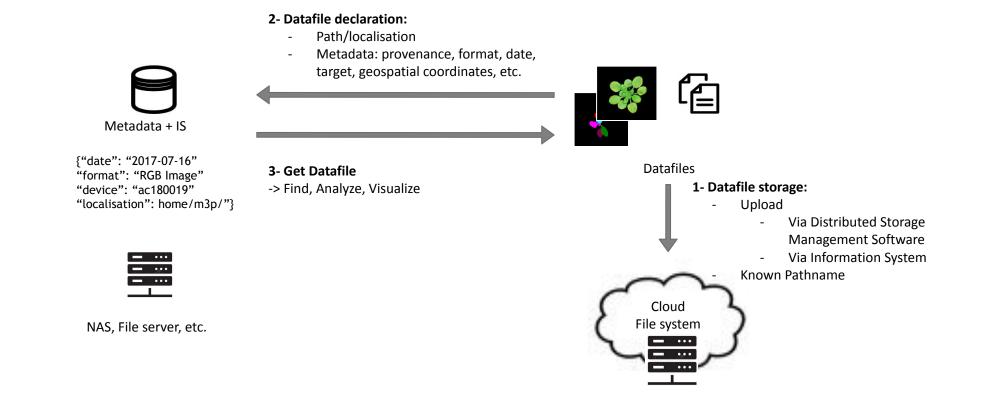
Phenotyping Data Acquisition

Measuring Plant Height



Datafiles storage & link to Information System

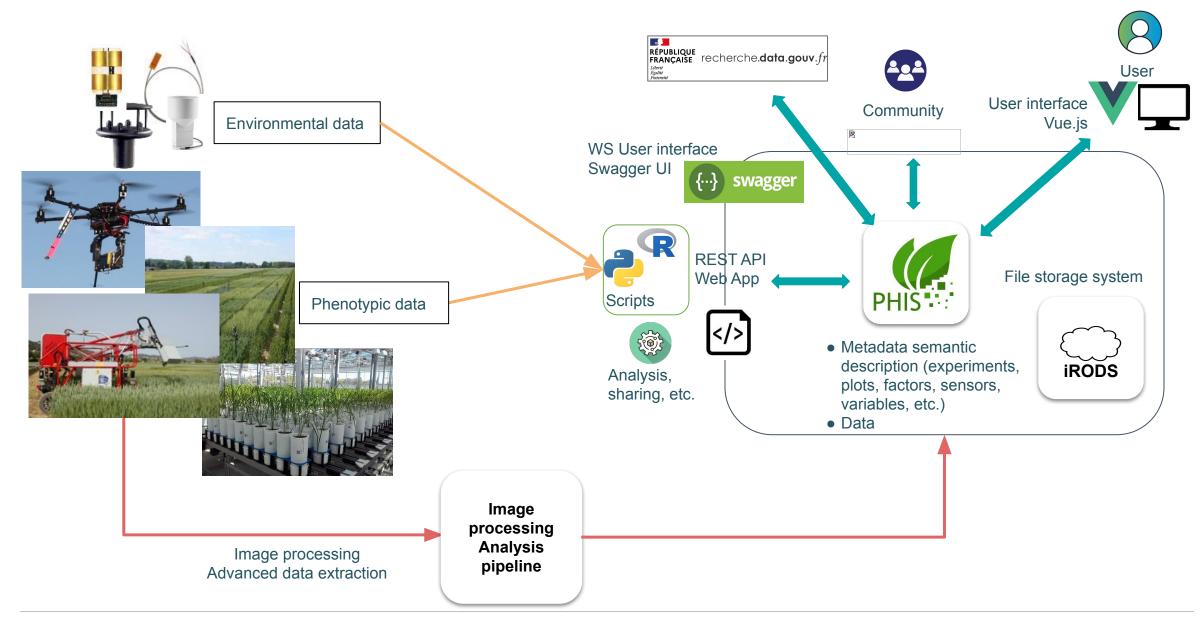
Different storage solutions



Distributed storage

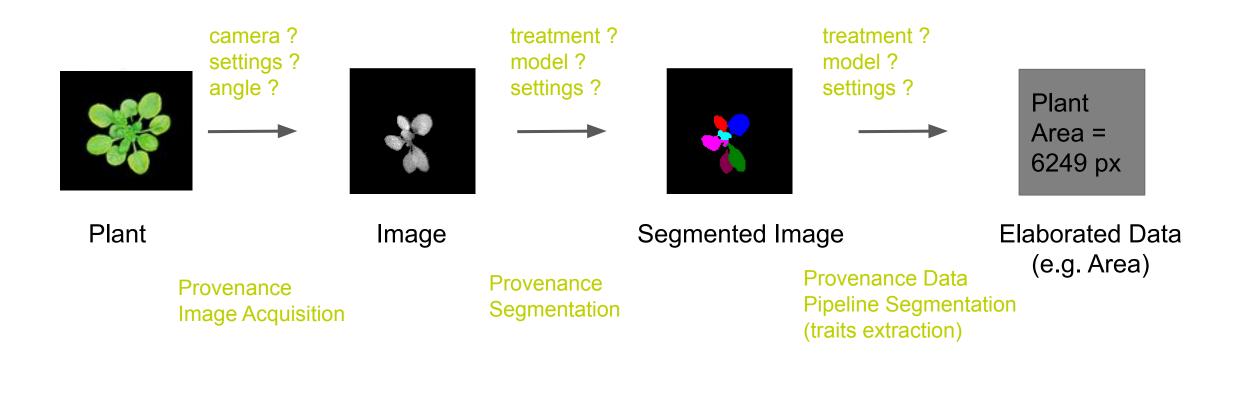
Datafiles storage & link to Information System

Implementation Example

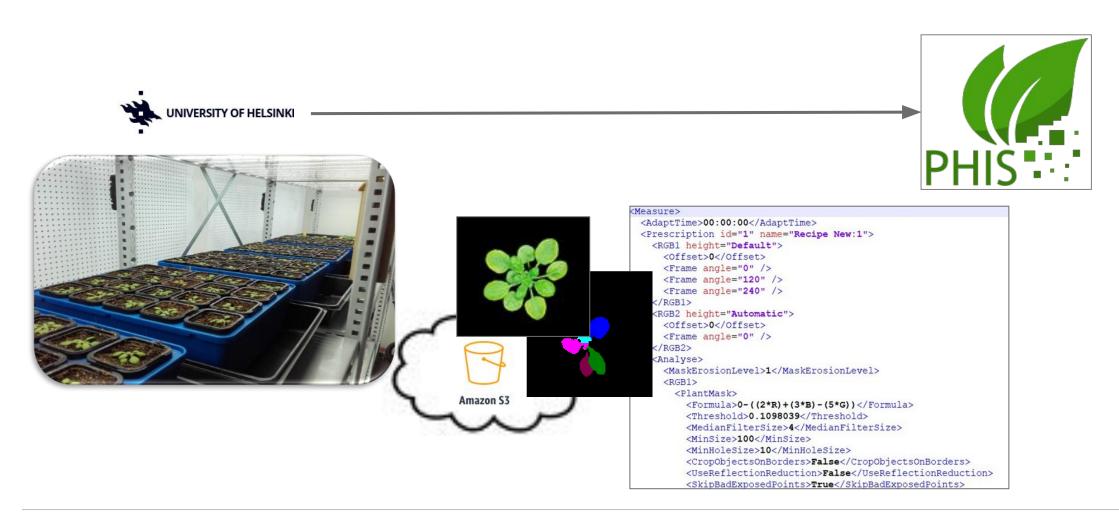

Datafiles storage & link to Information System

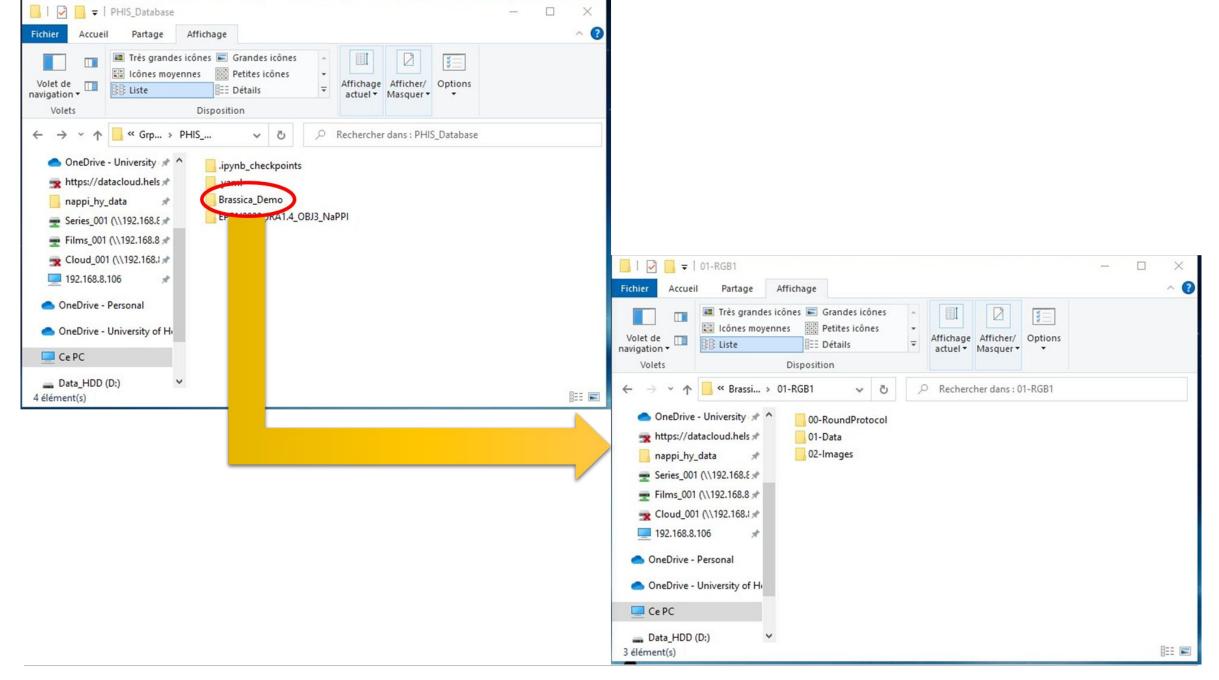
Implementation Example: view images directly from the web interface

	Data files View datafiles					? 🕀 û A
Scientific Organization	0	Showing 0 to 20 of 23 entries	Image			
Scientific Information >	C Type Select the datafile type	Target			Provenance	Actions
J] Data ~	Experiment(s)	cesa 5-2-1 (plant)		_	PHENOBEAN_images_brutes	
Tabular Data	PHENOBEAN_2021 × × +	cesa 5-2-1 (plant)			PHENOBEAN_images_brutes	8
Data files	Scientific object(s)	cesa 5-2-1 (plant)			PHENOBEAN_images_brutes	
Provenances	Select scientific objects	cesa 5(2-1 (plant)		_	PHENOBEAN_images_brutes	
Events	Begin MM/DD/YYYY hharm X	cesa 5-2-1 (plant)			PHENOBEAN_images_brutes	
Documents	End	cesa 5-2-1 (plant)			PHENOBEAN_images_brutes	
Vocabulary	MM/DD/YYYY hh:mm ×	cesa 5-2-1 (plant)			PHENOBEAN_images_brutes	
Administration >	Provenance	cesa 5-2-1 (plant)	•		PHENOBEAN_images_brutes	
Tools >	Images view					
a Open science	× Reset Q Search	cesa 5-2-1 (plant)		_	PHENOBEAN_images_brutes	
Web API		cesa 5-2-1 (plant)		_	PHENOBEAN_images_brutes	8 0
		cesa 5-2-1 (plant)			PHENOBEAN_images_brutes	8
		cesa 5-2-1 (plant)		OK	PHENOBEAN_images_brutes	8
		cesa 5-2-1 (plant)			PHENOBEAN_images_brutes	0
		cesa 5-2-1 (plant)	2021-06-24T10 03:50:000+0100	image	PHENOBEAN_images_brutes	
		cesa 5-2-1 (plant)	2021-06-24T16-03-49-000+0100	image	PHENOBEAN_images_brutes	8
		cesa 5-2-1 (plant)	2021-06-23T18-03-46-000+0100	image	PHENOBEAN_images_brutes	0
		cesa 5-2-1 (plant)	2021-06-22718:03:46.000+0100	image	PHENOBEAN_images_brutes	8
		cesa 5-2-1 (plant)	2021-06-21718:03:47:000+0100	image	PHENOBEAN_images_brutes	8
		cesa 5-2-1 (plant)	2021-06-20718:03:48.000+0100	image	PHENOBEAN_images_brutes	
		cesa 5-2-1 (plant)	2021-06-19T18-03:47.000+0100	image	PHENOBEAN_images_brutes	
		000000				

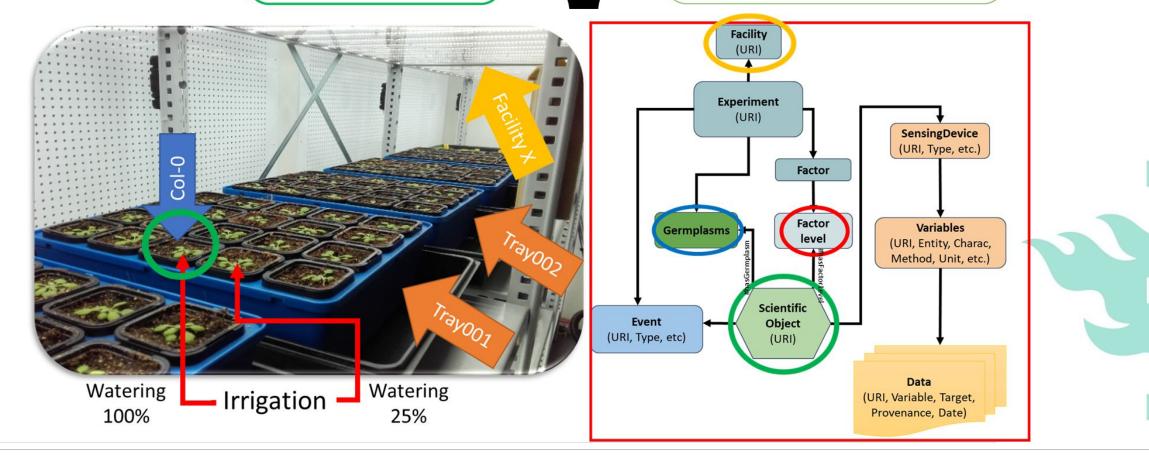

Implementation Example: PHIS, an Information System for Plant Phenomics

Data & Datafiles insertion


Image processing - Analysis Pipeline


Use Case - Sylvain Poque

Sending Data to PHIS Information System



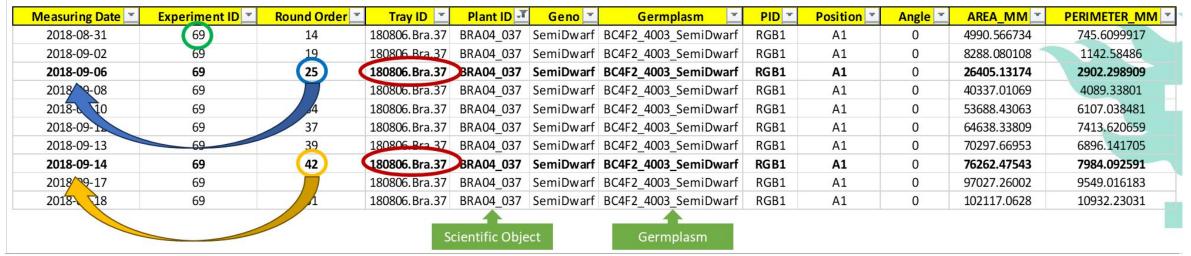
Identification

- Everything can be identified: plants, experiments, sensors, events, etc.
- Persistent, unambiguous, resolvable

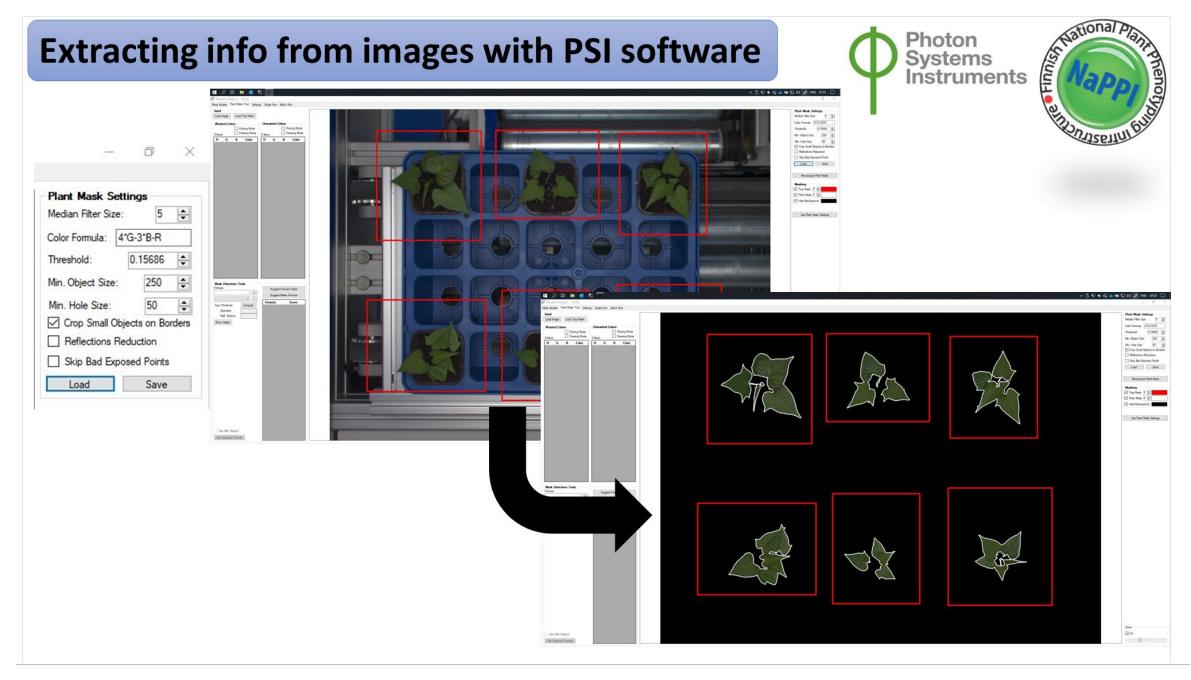
Semantics

- Naming Conventions
- Controlled vocabulary
- Formalized relationships between entities
- Data annotation and enrichment

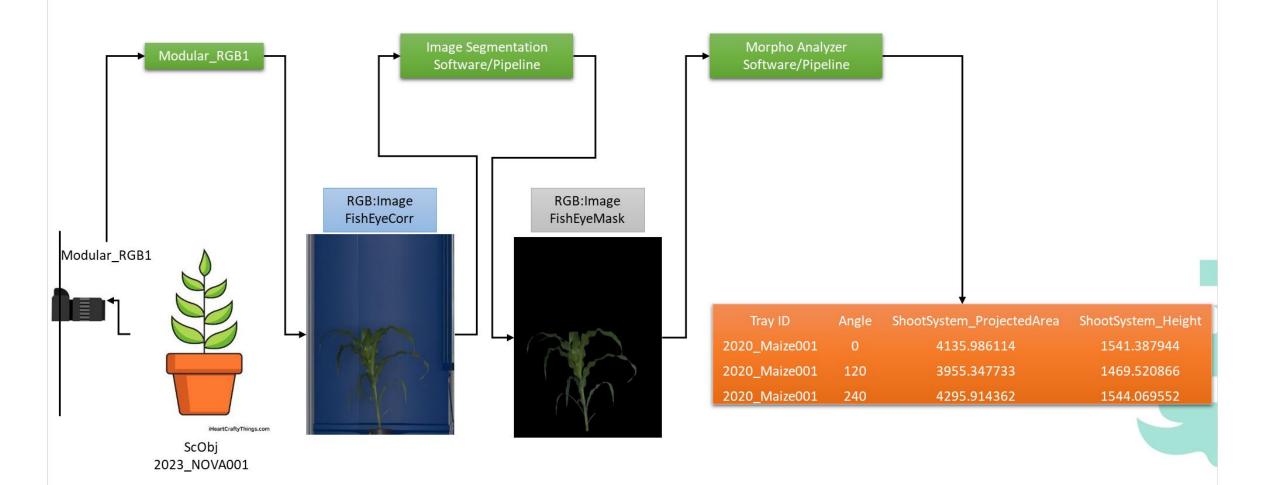
PHIS :


Example of NaPPI: Data structure outputs

6925180806.Bra.37 RGB1-000-FishEyeCorrected.png


6942 80806.Bra.37-RGB1-000-FishEyeCorrected.png

Photon Systems Instruments



I I </th <th>ffichage</th> <th>P:\nappi_hy_data\GrpFd_Common\PHIS_Database\Brassica_Demo\01-RGB1\00-RoundProtocol\RoundProtocol-69-8.txt - No</th>	ffichage	P:\nappi_hy_data\GrpFd_Common\PHIS_Database\Brassica_Demo\01-RGB1\00-RoundProtocol\RoundProtocol-69-8.txt - No	
Volet de navigation - Volets	ônes 🗊 Grandes icônes es 📰 Petites icônes EE Détails Disposition D-RoundProtocol V 🖉 Petites icônes T Disposition D-RoundProtocol V 🖉 Petites icônes T Disposition Petites icô	Image: Section id="1" name="Recipe New:1"> 4 C 4 C 5 C	
Accès rapide Ce PC Jdwl Téléchargements Aurelie Thiebault OneDrive - University https://datacloud.hels https://datacloud.hels Series_001 (\\192.168.8 * Films_001 (\\192.168.8 * Cloud_001 (\\192.168.8 *	Image: Second Protocol - 69 - 60 - 60 - 60 - 60 - 60 - 60 - 60	<pre>6 CFrame angle="0" /> 7 <frame angle="120"/> 8 <frame angle="240"/> 9 10 C <rgb2 height="Automatic"> 11 <offset>0</offset> 22 <frame angle="0"/> 33 </rgb2> 14 C <analyse> 15 </analyse> 16 C <rgb1> 17 C <plantmask> 18 </plantmask> 18 18 19 </rgb1> 10 C <rgb1> 10 C <rgb1> 10 C <analyse> 15 </analyse> 15 16 18 19 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 11 12 13 14 14 15 15 16 17 18 19 10 10 10 10 11 12 13 14 15 15 16 17 18 19 10 10 10 10 11 12 13 14 15 15 16 17 18 18 19 19 10 10 10 10 10 11 12 13 14 15 15 16 17 18 18 19 19 10 10 10 10 10 10 </rgb1></rgb1></pre>	
		eXtensible Ma length : 7 472 lines : 182 Ln : 1 Col : 1 Pos : 1 Windows (CR LF) UTF-16 Little Endian INS	

PHIS, Provenance

Conclusion

Take home message

- Variables: Take time to define your variables will allow you to understand them, reuse them, share them
 - => Portals exist to help you discovering Ontologies and Concepts! (Agroportal, BioPortal, Ontobee, etc.)
- **Datafiles:** study the storage solution best suited to **your needs and uses** *Remember you can have separate solutions for your information system!*
- **Provenance:** Make your data really **R**eusable!
- **Data Transfer Pipeline:** for improved automatization!

Thank you for your attention!

http://www.phis.inrae.fr/

Special thanks to: Silvana Moscatelli, François Tardieu, Romain Chapuis, Anne Tireau, Renaud Colin ...

EMPHASIS

European Union (Grant Agreement: 739514).

ESFRI

EMPHASIS_EU

EMPHASIS.EU

🕞 emphasis@fz-juelich.de

emphasis.plant-phenotyping.eu

EMPHASIS on Plant Phenomics

€

 \mathbf{y}

f

in