

Data Management S5: Advanced data management (2) Towards Data Science

Monday 11/12/2023 - 14:00-16:00 (CET)

Isabelle Alic, Farzaneh Kazemipour-Ricci - INRAE

Marie Weiss, Llorenç Cabrera Bosquet - INRAE

General objectives: Overview of data management for plant phenotyping - focus on FAIR data

Session 5

Advanced data management (2) - Towards Data Science

Overview

Towards Data Science

- Introduction & Review of last sessions
- Use case: from raw data to process analyses based on FAIR principles 4P
- Data enrichment: Events, Annotation and Documents
- Use Case: Data analysis and integration
- Geospatial: Integration and a step towards decision support
- Conclusion & Perspectives

Reminder - Data Management Best Practices

Step1 - Identification

URI of Experiment: <emphasis:study56>

URI of Facility: <emphasis:gantry2>

URI of Device: <emphasis:st14>

URI of microplot: <emphasis:plot15879>

URI of germplasm: <https://www.geves.fr/catalogue/variete/1002491-aubusson>

Reminder - Data Management Best Practices

Step2 - Experiment Description

Reminder - Data Management Best Practices

Reminder - Data Management Best Practices

Step3 - Data Declaration

- Variable description
 - Using Model
 - With ID
 - Provenance
 - Data Acquisition description
 - With ID

	HEIGHT	RU	LER	СМ
y 🕂 Cha	racteristic	Met	thod	Scale (unit)
URI]
http://phenome.inrae.fr/	id/variable/canopyEar_Nun	nber_counting	g_PERm2	
Entity 🕑 *			Entity of interest 🕜	
canopyEar		× Ŧ	Search and select	an observation level
Characteristic			Species	
Characteristic				
number per area		× =	barley × and 2 m	ore
number per area		X *	barley × and 2 m	ore
Method 🔮 *		× * × *	barley × and 2 m	ore isting in an ontology
Method • • Counting Unit/Scale • •		× *	barley × and 2 m	ore tisting in an ontology

PROVENANCE

- Description
- Start / End Date
- Vector
- Sensor
- Operator

. . .

Reminder - Data Management Best Practices

Reminder - Data Management Best Practices

=> Having well-organized and well-described data will enable data exploration and analysis

ImageSeg_Unitless

e_minimumDaily_degC

Use case: from raw data to process analyses based on FAIR principles

4P: Plant Phenotyping Processing Platform - Marie Weiss

Survey among phenotyping installations and users @ INRAE (2023)

Prioritization of needs

- 1. Data traceability FAIR: 28% Data only 71% Data+ Algorithms
- 2. Ergonomy / Easy to use
- 3. Quick Processing & computing facilities
- 4. Data Storage
- 5. Processing traceability

Capacities for processing

- 1. 57%: No in-house high-speed processing capacity
- 2. 21%: Processing facilities within the installation/lab
- 3. 16%: subcontracting specialized companies
- 4. 6% : Not yet defined

- Usable by all phenotyping installations @ INRAE
 - Compatible with all vectors/sensors
 - Processing pipelines easily shareable with PHENOME partners
 - Ergonomic: users are not developers
- Traceable
 - Storage of information related to sensor/vectors/data
 - Management and versioning of data processing chains
- Flexibility
 - Genericity : able to integrate processing chains developed in different languages, use commercial softwares (e.g. metashape)
 - Management and versioning of data processing chains
 - Scalability: update with new sensors/vectors/algo/traits

Files

f

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

Virtual Machines

Home Page

Installation Data Processing status

A Dashboard

😑 Data

Toulouse - A Z English -

2 3 4 5 ... 37 Next

🔝 Marie Weiss 🗸

Data

🚹 Load Data

Data Management

 Measuring session	Loading date	Experiment(s)	Vector	Data	PHIS	Size
DD/MM/YYYY - D	DD/MM/YYYY -	All	• All • All	- All -	All -	
30/03/2023 11:47	07/12/2023 12:08	23ZM8_FFAST	Phenomobile	HDF5 Files RGB Images Point Clouds		99.9 (
17/11/2023 11:34	04/12/2023 13:04	24ZN8_FFAST	Phenomobile	HDF5 Files		50.2
14/11/2023 12:34	27/11/2023 13:29	24ZN8_FFAST	Phenomobile	HDF5 Files RGB Images		78.9
14/11/2023 12:34	22/11/2023 13:55	24ZN8_FFAST	Phenomobile	HDF5 Files		50.0
26/07/2023 12:00	22/11/2023 09:46	23TE43_cimson	Drone	RGB Images		26.0
16/06/2023 09:23	22/11/2023 08:23	23ZM15_GIP	Phenomobile	HDF5 Files VegBackg Seg RGB Images RGB Images		277.8
				Multispectral Images Cropped RGB Images		
			C	anopy GreenSen FVC Canopy CoverFraction Canopy Height		
20/07/2023 12:00	16/11/2023 14:03	23TE43_cimson	Drone	RGB Images		35.8
14/11/2023 21:03	14/11/2023 20:05	24ZN8_FFAST	Phenomobile	HDF5 Files RGB Images Point Clouds		2.9 (
12/07/2023 12:00	09/11/2023 14:38	23TE43_cimson	Drone	RGB Images		29.1
03/07/2023 12:00	08/11/2023 14:50	23TE43_cimson	Drone	RGB Images	10	32.5

PLANT PHENOTYPING PROCESSING PLATFORM	Online help Voutube	channel				\$	Toulouse 🗸	A 🛪 English 🗸	Marie Weis
A	Data / 23ZM15_GIP Phenomob	ile 16/06/2023 09:23						« Previous group	<u>Next group</u> »
Tashboard	Upload to PHIS Pr	ocess dataset	Data	a Status					
C Macros	Description (ال 2780)		Data						
Modules	Experiment(s): 232	ZM15_GIP	Name		Version	State	PHIS	Size	Actions
) Monitoring	Measuring session: 16/	06/2023 09:23 11/2023 08:23	HDF5 Files		v1	0		63.4 GB	۵
Downloads	Size: 277	7.8 GB	RGB Image		v1	0		40.5 GB	0
Data types	iRODS path:	alification/2780	Multispectra Point Cloud:	i Images	v1 v1	0		15.9 GB 121.7 GB	a
🗕 Catalog	Vector: Phe	enomobile	Cropped RG	8 Images	v1	0	E	9.1 GB	۵
	PHIS:	i i	VegBackg S	eg RGB Images	v1	0		9.7 GB	*
			GreenSen S	eg RGB Images	v1	0		16.5 GB	۵
			Gap Fractio	1	v1	0		1.0 GB	*
			Canopy Hei	yht.	v1	0		194 KB	Ł
			Сапору Соч	erFraction	v1	0		327 KB	*
			Canopy Gre	enSen FVC	v1	0		419 KB	*
	Task history								^
	Label		Input data	Output data	Author Start da	ate Duratio	on Status	s / Progress	Actions
	Macro: <u>Pheno GreenSenFv</u> <u>SegVeg All v1.0</u>	<u>C - RGB</u> RGB Images v VegBad	Cropped RGB Images v1 kg Seg RGB Images v1	Canopy GreenSen FVC v1 GreenSen Seg RGB Images v1	Rémy 01/12/20 Marandel 14:36	023 02 h 33 r 43 s	nin Com	plete	
	Macro: Pheno Canopy Cover RGB 1.2	Fraction -	RGB Images v1	Cropped RGB Images v1	Rémy 01/12/20 Marandel 08:38	023 05 h 41 m 46 s	nin Com	plete	

PLANT PHENOTYPIN PROCESSING PLANT PROCESSING	Online help 🕨 Youtube cha	nnel			🕴 Toulouse 🗸	A 🛪 English 🗸	Marie Weiss 🗸
	Macros / Pheno Canopy CoverFrac	tion - RGB 1.2					
A Dashboard	Pheno Canopy Cover	Fraction - RGB 1.2 (ID	366)				
🛢 Data	Duplicate D Process data	iset					n Delete
C Macros							
🏟 Modules	Details						
🖓 Monitoring	Name: Phe	eno Canopy CoverFraction - RGB 1.2					
🛓 Downloads	Segmentation of Phenomoh	ile RGR images into Background	and vegetation and calculati				
🗞 Data types	on of the Coverfraction.	The Nob Images Theo background	and regetation, and carcalact				
🗁 Catalog	Compatible vectors: Phe	enomobile					
	Last use: 02/	12/2023 10:59					
	Author: Ayo	ub Nachite (<u>ayoub.nachite@inrae.fr</u>)					
	Technical guide:						
	Input data:	GB Images					
	Output data:	opped RGB Images VegBackg Seg RGB	Images Canopy CoverFraction				
	Status:	Published	Manage version				
	Version:	Modules last versions are used	manage version	15			
	Visibility:	Restricted to "PHIS" users only					
	Macro used 13 times						
	Date In	stallation	Output data				
	02/12/2023 10:59	Toulouse 23ZM15 GIP F	Phenomobile 28/04/2023 09:06	Data processed with th	nat		
	01/12/2023 08:39	Toulouse 23ZM15 GIP F	Phenomobile 09/05/2023 09:15				
	01/12/2023 08:38	Toulouse 23ZM15 GIP F	Phenomobile 16/06/2023 09:23	pipeline			
EMPH	20/11/2023 13:26	Toulouse 23ZM15 GIP F	Phenomobile 22/12/2022 12:51				17

🕋 Dashboard

🛢 Data

🗱 Macros

🏟 Modules

Monitoring

🛓 Downloads

👶 Data types

🗁 Catalog

Export Pl	HIS L2
🖹 Modify	Duplicate

Modules / Export PHIS L2

Youtube channel

Online help

Module Ex: Export 4P data to PHIS

« Previous module Next module »

iii Delete

Description (ID 5093)
Module d'export des	données L2 vers PHIS
Compatible species:	All
Type:	Export module
Author:	Antony Tong (antony.tong@ephesia-consult.com)
Compatible vectors:	
Technical guide:	Module - export L2 PHIS (v1)
Source repository :	git@forgemia.inra.fr:4p/modules/phis-export-I2.git
Docker image:	phis-export-I2:1.0.0
Status:	✓ Published from 03/01/2023 10:37
Integration status:	✓ Integrated from 03/01/2023 10:39

nputs		Legend: Mandat	Optional input
Prefix	Label	Туре	Default value
-installation	Current installation	string	
-experiment	Experiment URIs	list <string></string>	
-json	Configuration File	file	
provenanceL0	Provenance URI	string	
-sensorUri	Sensor URI	string	
-macro	Macro ID	integer	
-archiveUri	Archive URI	string	

Copyright © 2018 - 2023 INRAE All Rights Reserved - 4P - Version 2.8.1 of 30/11/2023

Catalog

Load a document

😑 Data

A Dashboard

🗱 Macros

Modules

💮 Monitoring

🛃 Downloads

👶 Data types

🗁 Catalog

Name	Format	Size	Category	Vector	Organization	Status
Name	All -		All -	All	- All -	Published
Plant segmentation model configuration	JSON file	3 KB	Setting	Phenomobile, Literal	Toulouse	✓ Published
Plant segmentation model weights	PTH file	40.7 MB	Deep Learning Model	Phenomobile, Literal	Toulouse	V Published
Pheno eardensity model weights	PT file	175.1 MB	Deep Learning Model	Phenomobile, Literal	Toulouse	V Published
GreenSen segmentation model		438 KB	Deep Learning Model	Phenomobile, Literal	Toulouse	V Published
ksmodel	CSV file	14 KB	Deep Learning Model	Phenomobile	Toulouse	✓ Published
Eardensity model weights	PT file	175.1 MB	Deep Learning Model	Phenomobile	Toulouse	V Published
White balance factors file RGB	CSV file	113 B	Calibration	Phenomobile	Toulouse	✓ Published
Soil height map	MAT file	1 KB	Measure	Drone	Toulouse	✓ Published
Transformation matrix 2 to 1	TXT file	408 B	Calibration	Phenomobile	Toulouse	✓ Published
Transformation matrix 3 to 1	TXT file	410 B	Calibration	Phenomobile	Toulouse	V Published

4 List of available traits

		SE	NSC	DR	V	сто	DR	
TRAIT	METHOD	RG B	M ult isp ec tra I	Li D AR	UA V	Ph en o m ob ile	LIT ER AL	REFERENCE
Plant height	Structure from motion/stereo							Madec et al., 2017 Weiss et al, 2017 Jay et al, en prep.
	Height Distribution							Madec et al., 2017
Vegetation	DL segmentation							Madec et al., 2022
Fraction (VF)	Height threshold							Lopez-Lozano et al., 2022
	VI Empirical							Jiang et al, 2018 Jay et al, 2019
Green Fraction (GF)	ML & DL segmentation							Serouart et al., 2022 Madec et al., 2022
	1D RTM inversion							Djamai et al, 2019 Camacho et al, 2021
	VI Empirical							Jiang et al, 2018 Jay et al, 2019 Camacho, 2021
Green Area Index (GAI)	1D RTM inversion							Djamai et al, 2019 Jay et al, 2019 Camacho et al, 2021
	3D RTM inversion							Liu et al., 2017 Jiang et al, 2019, 2020 Li et al, 2021 Lopez-Lozano et al, en prep
Plant Area	1D Turbid		UR		PE/		IN	Lonez-Lozano et al. en prep

		SE	ENSO)R	VE	ЕСТО	OR	
TRAIT	METHOD		M ult isp ect ral	LiD AR	UA V	Ph en o m obi le	LIT ER AL	REFERENCE
	VI Empirical							Camacho et al, 2021
Fraction of Intercepted Radiation	1D RTM inversion							Jiang et al, 2017 Liu et al., 2019 Li et al, 2021 Camacho et al, 2021
fAPAR	3D RTM inversion							Jiang et al., 2017
Average Inclination	1D RTM inversion							Liu et al., 2022 Lopez-Lozano et al., en prep Liu et al., 2019
Angle (AIA)	3D RTM inversion							Jiang et al., 2019
Canopy	1D RTM inversion							Delloye et al, 2018
Content (CCC)	VI Empirical							Jay et al., 2019
3D Distribution of Leaf Area	1D Turbid							Liu et al., 2017 Lopez-Lozano et al, en prep
Plant density	DL							Jin et al., 2017 Velumani et al, 2021
Ear density	DL @ reprod, stage							Madec et al., 2019
Leaf	1D RTM inversion							Jiang et al, 2018
Chlorophyll Content	VI ML, Empirical							Jay et al., 2017, 2019 Jay et al, en prep

EMPHASIS Plant Area

IN FRASTRUCTURE FOR PLANT PHENOTYPING

EMPHASIS

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

Actual (manual labelling)

DL model from the global wheat head data challenge : David et al, 2021, 2023 Footprint of the RGB camera derived from camera height estimated from LidAR

LiDAR / Height / Gap Fraction / Plant Area Density

Lopez-Lozano et al, in prep

Pre-FFAST project (2021) @ DiaScope. 10 G x well-watered x november sowing x 2 replicates

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

25	

THANKS	FOR	YOUR	ATTEN	TION

Platform

Development

Software

and functional

architecture

THE TEAM

France Grille

Cloud computing and

Platform Management

Algorithms

CVDL

UMR EMMAH

INRA

UMR MISTEA

Information System

Experimental

Units

UE GCA UE PHACC UE DIASCOPE

Specifications

Test

Use

Data enrichment: Events, Annotation and Documents Definitions

- Events: can be processes, actions or facts that occur in (or even precede) scientific experiments and have an influence on the experiment. Events are identified and characterized. Main categories are controlled (irrigation, fertilizer, maintenance, installation) or uncontrolled (hail, frost, pests, breakdown).
 - => Treatment, Trouble, Pest attack, Move, etc.

- Annotation: A short comment added to an entity (data, object, experiment, device, etc.).
 - => Motivations: Comment, Highlight, Classify, Moderate, Link, Tag, etc.
- Documents: A document refers to a combination of a medium and information (the content), the latter recorded in a persistent manner. It has explanatory, descriptive or evidential value.
 - => Report, Publication, Technical document, Experimental protocol, Dataset, etc.

Data enrichment: Events, Annotation and Documents

- Events: can be processes, actions or facts that occur in (or even precede) scientific experiments and have an influence on the experiment. Events are identified and characterized. Main categories are controlled (irrigation, fertilizer, maintenance, installation) or uncontrolled (hail, frost, pests, breakdown).
 - => Treatment, Trouble, Pest attack, Move, etc.
 - => MIAPPE, Ontology of Experimental Events (OEEV) <u>https://agroportal.lirmm.fr/ontologies/OEEV</u>
- Annotation: A short comment added to an entity (data, object, experiment, device, etc.).
 - => Motivations: Comment, Highlight, Classify, Moderate, Link, Tag, etc.
 - => Web Annotation Ontology (OA) https://www.w3.org/ns/oa
- Documents: A document refers to a combination of a medium and information (the content), the latter recorded in a persistent manner. It has explanatory, descriptive or evidential value.
 - => Report, Publication, Technical document, Experimental protocol, Dataset, etc.
 - => Dublin Core https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

Data enrichment: Events, Annotation and Documents

Definitions

Data enrichment: Events, Annotation and Documents

Illustration

Events - MIAPPE important Section

Event

- Discrete, dated or time-stamped occurrence
- Natural (e.g. rain, pathogen attack)
- Cultural practice (e.g. sowing, irrigation)
- Applied to the whole study or by observation unit
- This is not the factor, but additional information.
- Event can be used to achieve a factor.

Metadata : name, description and time/date

Example: POPLAR [2]

- the field establishment date, 2003
- the orchard was subjected to 15mm of rain on March 15, 2012 (fiction)

	Event			
Study	Name	Description	Date	
Monclus <i>et al., 2012</i>	Rain	15mm of rain on the orchard	2012-03-15	

Event	
Event type	
Event accession number	
Event description	
Event date	
	_

Event Types & Properties

- Event ID
- Event Type
- Event Description
- Event Date / Period
- Target

Event Types & Properties: Move

- Event ID
- Event Type
- Event Description
- Event Date / Period
- Target
- From
- To
- Coordinates
- X, Y, Z Position
- Textual position

Event ID

Event Types & Properties: Treatment

• Event Type

- Event Description
- Event Date / Period
- Target
- Product
- Quantity
- Pest

• Agent

Describe a scientific object life cycle

Data Exploration: environmental and phenotypic data

Visualising and linking environmental and phenotypic data

EMPHASIS

Use Case: Data analysis and integration

How FAIR data may help in managing and analyzing data in HTPP

experiments? - Llorenç Cabrera Bosquet

Data analysis and integration

How FAIR data may help in managing and analyzing data in HTPP experiments?

- First ->Some prerequisites
- Data are organised and managed following FAIR principles
- All data includes phenotypic, environmental and metadata measurements
- Ideally, data is managed in 'real time' (allows decision-taking)

Exemple 1: Piloting and monitoring water deficit in thousands of plants

We need to continuously and individually monitor and manage water scenarios in most experiments

How soil water content (SWC) and SWP is measured?

1. Plant are weighed individually on a daily basis (or more) 2. Soil water content (g H₂0 per g of dry soil) is deduced using a formula

3. Soil water potential (bar) is calculated using a soil retention curve (Ψ vs Φ)

1. Platform weighs the whole 'system', not only soil weight

1. Platform weighs the whole 'system', not only soil weight

1. Platform weighs the whole 'system', not only soil weight

WE NEED

Proper identification of individual components

URI of plant <m3p:arch/2017/c17000118>

URI of pot: <m3p:arch/2013/pc13001542>

URI of cart: <m3p:arch/2013/ct1300123>

Weight of individual components + metadata

- Weight of pots, carts, soil, etc.
- Soil used and its characteristics
- Intitial soil water content at potting
- Events that may have affect the weight (e.g. fertilisation, adding of sticks, etc.)

2. Plants grow over time

This may have a HUGE impact on soil water content estimation if plant biomass is not taken into account

2. Plants grow over time

Identification of relevant information

WE NEED

URI of plant <m3p:arch/2017/c17000118>

URI of cabin: <m3p:arch/2018/ac180015>

URI of camera: <m3p:arch/2018/ac180019>

URI of image: <m3p:arch/2017/ic17002295855>

This may have a HUGE impact on soil water content estimation if not taken into account

2. Plants grow over time

Identification of relevant information

WE NEED

URI of plant <m3p:arch/2017/c17000118>

URI of cabin: <m3p:arch/2018/ac180015>

URI of camera: <m3p:arch/2018/ac180019>

URI of image: <m3p:arch/2017/ic17002295855>

Plant biomass estimation over time

Requires real time monitoring and analysis of data

2. Plants grow over time

WE NEED

Identification of relevant information

URI of plant <m3p:arch/2017/c17000118>

URI of cabin: <m3p:arch/2018/ac180015>

URI of camera: <m3p:arch/2018/ac180019>

URI of image: <m3p:arch/2017/ic17002295855>

Plant biomass estimation over time

Requires real time monitoring and analysis of data

Finally SWC and SWP are calculated

SWC = Weight of 'whole system' - Plant biomass - Weight of Pot - Weight of Cart - b / a

Local humidity after watering on day 2017-04-10

SWP = $((SWC/2)^{(-n/(n-1))}-1)^{(1/n)}/(-\alpha)/10$ Soil water content (g g⁻¹) 20 . Soil humidity 0.9 1.2 1.5 0.3 0.6 1.25 Soil water potential (bar) Position 0 1.00 0.75 7 0.50 2 40 -က 4 S 60 van Genuchten adjustment (1980) n = 1.1611, α = 63.355 10 20 Line

EMPHASIS

Envirotyping: Spatial and temporal variability and consequences for phenotyping

- Climate information is an essential **co-variate for monitoring growth** as drives most growth processes.
- Most platforms display a large temporal and spatial variability of environmental conditions

There are some consequences for phenotyping...

IGNORING IT => depreciates the value of phenotypic data.

MEASURING IT enables

- => The combination of data from different experiments, different platforms or from field and platforms.
- => Taking advantage of (undesired) climate variability to determine environmental response curves during an experiment.

Exemple 2: Environmental quantification

AIM : Calculate thermal time from sowing for each plant in an experiment

ThermalTime =
$$\sum_{i}^{n} T_{air} - T_{b}$$

Apparently easy but...

- Plants sown and harvested in batches at different dates
- Plants belonging to different crops
- Plants located in different positions of the greenhouse
- Sensors at different positions displaying significant variation in temperature

Exemple 2: Environmental quantification

AIM : Calculate thermal time from sowing for each plant in an experiment

$$ThermalTime = \sum_{i}^{n} T_{air} - T_{b}$$

WE NEED

- Plants sown in batches at different dates => Sowing and harvest dates for each plant (events)
- Plants belonging to different crops => $T_{\rm b}$ specific for each crop (ex. 8°C for maize, 0°C for wheat)
- Plants located in different positions of the greenhouse => tracking of plants' position
- Sensors displaying significant variation in temperature => Sensor position, variable measured and units

Exemple 2: Environmental quantification

Taking into account all this annotated date allows to calculate thermal time for each plant in an experiment

analysis

Statistical methods

1. **Detection of outlier plants** (bad germinantion, disease, seed error) Alvarez Prado *et al.* 2019

Incorporation of statistical methods for platform management, data 'cleaning,' and

- 2. **Design Generator**: User friendly online service aimed at construction and generation of experimental designs <u>https://eppn2020design.com/</u>
- 3. **statgenHTP R package** (outlier detection, correction of spatial trends, patameter extraction from time series)

Diana Perez

Coté Rodriauez

-	Paper Serger	
	». • · ·	> 8
		× a

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOT EPIMillet

Spatio-temporal analysis of HTTP data

scientific reports

Article Open Access Published: 24 February 2022

A two-stage approach for the spatio-temporal analysis of high-throughput phenotyping data

Diana M. Pérez-Valencia ^[52], María Xosé Rodríguez-Álvarez, Martin P. Boer, Lukas Kronenberg, Andreas Hund, Llorenç Cabrera-Bosquet, Emilie J. Millet & Fred A. van Eeuwijk

1. Design features and spatial trends

2. Longitudinal modelling of the spatially corrected data, thereby taking advantage of shared longitudinal features between genotypes and plants within genotypes

PHENOARCH - INRAE

FIP - ETH Zürich

3. Extracting time-independent attributes to characterise genotypes

Code available

EUROPEAN INFRASIRUCIURE FUR PLANI PHENUIYPING

Geospatial Events

Event with an Area as a Target

- Event ID
- Event Type
- Event Description
- Event Date / Period
- Target = Area
 - Туре
 - Name
 - Description
 - Geometry

Geospatial Events

Event with an Area as a Target

- Event ID
- Event Type
- Event Description
- Event Date / Period
- Target = Area
 - Туре
 - Name
 - Description
 - Geometry

Events and also...

- Any observed object
- Any device
- Any facility
- Adresse (site, institution, ...)
- •

IS vs GIS: How to deal with spatial data?

IS vs GIS: How to deal with spatial data?

Do we need a GIS to manage properly and FAIRly Geospatial phenotyping data?

- GIS: What are the limits?
 - File sizes, Transformation & Projection ⇒ access limits
 - DBMS : mostly relational
 - Limited performance and capacity in Big Data applications and MetaData management
 - Limited flexibility to handle complex data types and relationships

- GIS: What are the limits?
 - File sizes, Transformation & Projection ⇒ access limits
 - DBMS : mostly relational
 - Limited performance and capacity in Big Data applications and MetaData management
 - Limited flexibility to handle complex data types and relationships

Make a high-performance I.S. interoperable with a GIS

- GIS: What are the limits?
 - File sizes, Transformation & Projection ⇒ access limits
 - DBMS : mostly relational
 - Limited performance and capacity in Big Data applications and MetaData management
 - Limited flexibility to handle complex data types and relationships

Make a high-performance I.S. interoperable with a GIS

- Query & Analyse
- Exporting different formats (shapefiles, geojson, CSV,...)
- Spatial functions and indexation
- DB: PostGreSQL and extension PostGIS, Oracle Spatial, MongoDB, MySQL Spatial

• Implementation examples :

Spatial data storage in *MongoDB* using *SOSA* ontology

MongoDB:

- Document oriented DBMS (Object = document, organized in collections)
 NoSQL
- Data format : BSON (binary JSON)
- Spatial data format : GeoJson (WGS84)

SOSA Ontology (Semantic Sensor Network Ontology):

- Formal but lightweight general specification
- Modeling the interaction between entities
 - Sensor
 - **O**bservation
 - Sample
 - Actuator
- Use the observation collection of SOSA :
 - 1 spatial data of 1 object = 1 observation
 - 1 liste of spatial data of 1 object = 1 observation collection

- Spatial Data format
 - Projection system: mostly WGS84 (World Geodetic System 1984 -EPSG:4326) : longitude/latitude
 - GeoJson, WKT, KML,
 - Visualization libraries: OpenLayers, MapBox, LeafLet

POINT(6	10)						
LINESTRI	VG(3	4,	10	50,	20	25)	
POLYGON ((1 1	, 5	1,5	5,	1 :	5,1	1))
				₩ĸ [.]	т		

Geospatial targets (Events: PHIS)

Example: Irrigation location - Draw the area

Geospatial targets (Events: PHIS)

Example: Irrigation location - Define the area

MAP PANEL $ imes$	MAU17-PG Experiment	Description of the area	
 ✓ Scientific Objects (390) ✓ Plot (390) ✓ 	Description Factors 1 Scientific objects 2K+ Data 729 Visualization Map Ann Evit creation mode	Area URI 🕑	-
 ✓ Areas (1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 		autogenerated URI	
Devices (0) Filters (0)		Autumn 2023 Flooding Type of area	and the second second
+ Create filter		Structural area Type	and the second sec
	for the second	Flooding ×	
		End 🖗	H -
		10/20/2023 17:07 × 10/21/2023 14:00 ×	
		Autumn 2023 Flooding on west part of the plot	
		Cancel OK	

Geospatial targets (Events: PHIS)

Example: Irrigation location - Visualize the area

Geospatial targets (Objects: PHIS)

PHIS to QGIS (objects, devices, events)

And then?

- I.S. managing all data including spatial data
 - Import and export
 - Query
 - Visualization
 - \circ $\;$ Interoperable with GIS $\;$

⇒ Meta analysis & Geostatistic

\Rightarrow Historical data as well as data for the current year

Geostatistics & Spatial tools: Zoning & beyond

Mostly used for yield data ... and other spatial data!

- More and more agronomic variables
- Possibility of adaptive management based on intra-field variability
 - How and where implement an experiment?
 - How to filter and clean spatial data?
 - How to validate the relevance of the outlier detection and filtering?
 - How to integrate expertise (agricultures, advisors, ...)?
 - How to simulate a spatial data set based on historical and current data?
 - How to generate recommendation maps (Decision-Support Tools)

Geostatistics & Spatial tools: Outlier detection & filtering

Mostly used for yield data ... and other spatial data! (C. Leroux & H. Jones)

Outlier detection, filtering & zoning (fertilization)

Mostly used for yield data ... and other spatial data! (C. Leroux & H. Jones)

- Outlier deleting
- Reassessment of yield characteristics

- Operational zoning for yield data (clustering)
- Fertilization application

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

Geostatistics & Spatial tools: Yield map simulation

Mostly used for yield data ... and other spatial data! (C. Leroux & H. Jones)

Zoning: Historical phenotyping data for experiment implementation

- Maximizing:
 - Inter zones heterogeneity
 - Intra zone homogeneity
- Shape constraints

Variable: Yield, Soil parameters, Biomass, ...

Geostatistics & Spatial tools: Zoning

Zoning: Historical phenotyping data for experiment implementation

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

Geostatistics & Spatial tools: Zoning

Zoning: Historical phenotyping data for experiment implementation

80

Vineyard yield forecasting based on machine learning methods (H. Jones et al.,)

Methode Random Forest

Machine learning algorithm

Supervised learning (need for examples for inputs/output to learn)

- Possible to use on

- Classification (predict a class)
- Regression (predict a value)

What & When are the best data for yield reporting?

Vineyard yield forecasting based on machine learning methods (H. Jones et al.,)

What is to be predicted?

		Year				
Variable	2018	2019	2020	2021		
Pruning mass (from hand sampling postseason)	<u>Й</u> 					
Yield (from AgLeader yield monitor)	Contraction of the second seco					

Vineyard yield forecasting based on machine learning methods (H. Jones et al.,)

Some results...

Think FAIR	Structure	Data	Use Standards	Think of <i>I</i>	WetaData	Use Onto	ology	Use semantic
Use appropria	ate DBMS	U	lse appropriate storage s	ystems	Make go	od DMP	G	DPR compliant

- Start changing habits and adopt appropriate methods & tools
- Trainings, workshops & Hackathons
 - PHENET-EMPHASIS Joint training event in 2024

Training materials and survey to set the dates and content

- BrAPI Hackathon in 2024 https://brapi.org/events/hackathon
- BioHackathon in 2024 https://biohackathon-europe.org/
- PhenoHarmonIS Montpellier May 2024

- Start changing habits and adopt appropriate methods & tools
- Trainings, workshops & Hackathons
 - PHENET-EMPHASIS Joint training event in 2024

Training materials and survey to set the dates and content

- BrAPI Hackathon in 2024 https://brapi.org/events/hackathon
- BioHackathon in 2024 https://biohackathon-europe.org/
- PhenoHarmonIS Montpellier May 2024

Contact us.	Co	nta	ct	US:
-------------	----	-----	----	-----

```
opensilex@gmail.com
isabelle.alic@inrae.fr
farzaneh.kazemipour@inrae.fr
pascal.neveu@inrae.fr
cyril.pommier@inrae.fr
```


Special thanks to: Silvana Moscatelli, François Tardieu, Alexia Chiavarino, Sarra Abidri, Anne Tireau, Hazaël Jones...

EMPHASIS_EU

EMPHASIS.EU

emphasis.plant-phenotyping.eu

EMPHASIS on Plant Phenomics

🕞 emphasis@fz-juelich.de

ESFRI

€

 \mathbf{y}

f

in

European Union (Grant Agreement: 739514).

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING